Front Matter: Volume 10152
High Power Lasers, High Energy Lasers, and Silicon-based Photonic Integration

Lijun Wang
Zhiping Zhou
Editors

9–11 May 2016
Beijing, China

Organized by
Chinese Society for Optical Engineering (CSOE) (China)
Photoelectronic Technology Committee, Chinese Society of Astronautics (China)
Photoelectronic Industrialization Committee, CHIA (China)
Department of Cooperation and Coordination for Industry, Academe and Research, CHIA (China)

Sponsored by
Chinese Society for Optical Engineering (CSOE) (China)
China High-tech Industrialization Association (CHIA) (China)

Published by
SPIE

Volume 10152
The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

ISSN: 0277-786X
ISSN: 1996-756X (electronic)
ISBN: 9781510607620

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time)· Fax +1 360 647 1445
SPIE.org

Copyright © 2016, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/16/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B, 0C, 0D, 0E, 0F, 0G, 0H, 0I, 0J, 0K, 0L, 0M, 0N, 0O, 0P, 0Q, 0R, 0S, 0T, 0U, 0V, 0W, 0X, 0Y, 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.
Contents

vii Authors
ix Conference Committee
xi Introduction

HIGH POWER LASERS, HIGH ENERGY LASERS, AND SILICON-BASED PHOTONIC INTEGRATION

<table>
<thead>
<tr>
<th>Proc. of SPIE Vol. 10152 101521I-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>10152 01 Transfer printing of thin-film microscale GaAs lasers on silicon [10152-1]</td>
</tr>
<tr>
<td>10152 02 Experimental study of HgCdTe imaging sensor irradiated by pulse CO₂ laser [10152-2]</td>
</tr>
<tr>
<td>10152 03 Numerical studies of the magnetic field and thermal flux reduction in anisotropic plasmas [10152-5]</td>
</tr>
<tr>
<td>10152 04 Numerical analysis of the temperature field in silicon avalanche photodiode by millisecond laser irradiation [10152-14]</td>
</tr>
<tr>
<td>10152 05 High efficiency Tm³⁺-doped fiber seed source of optimum fiber length [10152-29]</td>
</tr>
<tr>
<td>10152 06 Analysis of influence factors on 2 μm Tm³⁺-doped fiber laser output characteristics [10152-30]</td>
</tr>
<tr>
<td>10152 07 Study on CCD detector irradiated by multi-pulse laser [10152-32]</td>
</tr>
<tr>
<td>10152 08 Influence analysis of an asymmetrical suspension system on triaxial signals' phase differences of fiber optic vector hydrophones [10152-35]</td>
</tr>
<tr>
<td>10152 09 Stable and tunable single frequency mid-infrared optical parametric oscillator [10152-36]</td>
</tr>
<tr>
<td>10152 0A Study of dual wavelength composite output of solid state laser based on adjustment of resonator parameters [10152-39]</td>
</tr>
<tr>
<td>10152 0B A novel criterion for evaluating the beam quality of high energy laser [10152-40]</td>
</tr>
<tr>
<td>10152 0C Active illuminated space object imaging and tracking simulation [10152-42]</td>
</tr>
<tr>
<td>10152 0D Measurements of electron number density and plasma temperature using LIBS [10152-43]</td>
</tr>
<tr>
<td>10152 0E The shape effect of space debris on recoil impulse by pulsed laser ablation [10152-45]</td>
</tr>
<tr>
<td>10152 0F Powerful 40 GHz narrow linewidth random fiber laser [10152-46]</td>
</tr>
<tr>
<td>10152 0G Investigation on the thermal properties of volume Bragg grating in laser diodes with external cavities [10152-47]</td>
</tr>
</tbody>
</table>
Thermal effect of large-diameter laser rod in multi-direction side-pump high power pulsed Nd:YAG laser amplifier [10152-48]

Plasma evolution regulations with the change of initial conditions of femtosecond laser and an optical detecting scheme is verified numerically [10152-49]

Proposal of using slot-waveguide cavity to reduce noises in resonant integrated optical gyroscopes [10152-50]

Wideband and low dispersion slow light in structure optimized optofluidic infiltrated photonic crystal waveguide [10152-52]

Investigation on ultrafast third-order nonlinear optical properties of benzothiadiazole copolymer with triphenylamine derivative side chain [10152-53]

Wideband slow light with large NDBP at any group index in photonic crystal waveguide [10152-53]

Ultra-fast nonlinear optical properties and photophysical mechanism of a novel pyrene derivative [10152-54]

A tunable nonreciprocal device based on PT symmetry [10152-55]

The performance study of oxide by-passed(OB) lateral double diffused MOSFET [10152-56]

Influence of Er3+ and Yb3+ concentration for upconversion emission in KLTN ceramics under 980nm laser excitation [10152-57]

Chemical laser exhaust pipe design research [10152-58]

High power 888nm optical fiber end-pumped Nd:YVO\textsubscript{4} picosecond regenerative amplifier at hundreds kHz [10152-59]

The homogeneous and dual-medium cell’s refractive index decoupling method and entropy tomographic imaging [10152-60]

Design and optimization of a silica waveguide based visible etched diffraction grating with uniform loss [10152-61]

Design of 6 kw fiber-coupled system for semiconductor laser [10152-63]

The study of the noise immunity of chip spectrometer based on sparse recovery [10152-64]

Interaction between pulsed infrared laser and carbon fiber reinforced polymer composite laminates [10152-66]

An experimental research about dye-doped distributed feedback laser [10152-67]

Research of target uniform illumination on SG-III laser facility [10152-68]
Pockels effect and optical rectification induced by the built-in electric field in the space charge regions of surface layers of silicon crystals [10152-69]

Study on the electromagnetic radiation characteristics of discharging excimer laser system [10152-70]

Study on transmission characteristics of one-dimensional photonic crystal microring resonators [10152-71]

Compact and efficient CW 473nm blue laser with LBO intracavity frequency doubling [10152-73]

Compact polarization rotator based on directional coupler of two waveguides with different width and height [10152-75]

Optical properties of two-dimensional ZnO array generated by template method [10152-77]

Compact intra-cavity frequency doubled line beam green laser by a laser diode array pumped [10152-78]

Influence of deviation in central wavelengths of both a seed laser and a pump LD on the output features of a DPAL-MOPA system [10152-80]

Study of plasma oscillations in photoelectric semiconductor detectors [10152-83]

Evaluation of population densities of a rubidium laser pumped with a narrow-linewidth Ti:sapphire laser [10152-84]

Ultra-compact photonic crystal integrated sensor formed by series-connected nanobeam bandstop filter and nanobeam cavity [10152-85]

Passively Q-switched Nd:YAG/Cr4+:YAG micro laser with high beam quality [10152-86]

Influence of truncation factor on coherent beam combining based on a triangular fiber laser array [10152-87]

Stable 500kHz, 1ms, 40mJ pulse-burst GdVO4/Nd:GdVO4 laser oscillator [10152-88]

Improving efficiency of spectral beam combining by optimizing reflectivity of output coupler for laser diode array [10152-89]

Development of slab amplifiers for integration-test-bed [10152-91]

Design of 150W, 105-μm, 0.22NA, fiber coupled laser diode module by ZEMAX [10152-90]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abudurexiti, A., 03
An, Guofei, 18, 1A
An, Jianzhu, 0C
Ayikanbaier, K., 03
Bai, Zhenao, 0S
Bai, Zhenxu, 0S
Cai, He, 18, 1A
Chen, Deying, 0Y
Chen, Jianzhu, 0C
Chen, Lin, 1G
Chen, Qing, 1H
Chen, Si Yu, 16
Chen, Xiu Yan, 16
Chen, Yongqi, 0V, 1F, 1H
Chen, Yuanbin, 1G
Chen, Zhan, 10
Chen, Zhaodong, 0Y
Cheng, Xiang-ai, 19
Cui, Jun, 0W
Ding, Lushuang, 0V
Dong, Zhiyong, 0V
Dou, Xianan, 0I
Du, Chunlei, 0W
Fa, Xin, 1E
Fan, Chen, 0Z
Fan, Rongwei, 0Y
Fan, Zhongwei, 0H, 0S
Fang, Xiaodong, 02, 11
Gao, Ming, 18, 1A
Gao, Shaobo, 15
Geng, Weixiang, 0L
Guo, Longde, 0R
Han, Gaocen, 0G
Han, Juhong, 18, 1A
Han, Kai, 0B
Han, Xiaohe, 0E
He, Jian-Jun, 0U
He, Jun-fang, 0D
Hou, Lixin, 1O
Hu, Dongxia, 0Z
Hu, Hongtao, 02
Hu, Yongming, 0B
Hu, Yuye, 0A, 0I
Hu, Zhengliang, 0B
Huang, Chaeng-Guang, 0X
Huang, Wei, 0G
Huang, Xuesong, 1C
Huang, Zhilong, 0R
Hui, Yongling, 1C
Ji, Y., 0T
Ji, Yuexfeng, 1B
Jia, Huating, 0Z
Jia, Jing, 0Q
Jiang, Jianfeng, 0O
Jiang, Ninghua, 1C
Jiang, Xiaojing, 0O
Jiang, Yi, 0J
Jiang, Zhigang, 18, 1A
Jin, Guangyong, 04, 05, 06, 07
Jin, W. F., 0T
Jin, Xiao, 0L
Kang, Zhijun, 0S
Kong, Mei, 0J, 12
Lang, Tingting, 0U
Lei, Hong, 1C
Li, Changhong, 0M
Li, Hongye, 0K
Li, Haitao, 0G
Li, Lei, 0Q
Li, Mingxin, 07
Li, Mingyu, 0U
Li, Ping, 0Z
Li, Qiang, 1C
Li, Xia, 0O
Li, Xiu, 16
Li, Xu, 0S
Li, Xudong, 1E
Li, Yuan-yuan, 0D
Li, Zhiyong, 0G
Li, Zhuo, 09
Lian, Fuqiang, 0S
Liang, Linmei, 15
Liang, Xue, 11
Lin, Xuechun, 0V, 1F, 1H
Liu, Chang, 0S
Liu, Jiangguo, 1G
Liu, Lanqin, 0Z
Liu, Ping, 15
Liu, Xuhuan, 10
Liu, Yan-Chi, 0X
Liu, Yong, 1G
Lu, Longzhao, 19
Luo, Bingfeng, 19
Luo, Wen, 0C
Luo, Wenfeng, 0D
Ma, Xiaohui, 1F
Ma, Yan-xing, 1D
Nie, Changbin, 0W
Nie, Jingsong, 02, 0A, 0I
Nie, Shuzhen, 0H
Qi, Yan, 13, 17
Qi, Yunfei, 0V, 1F, 1H
Qin, Yuan-cheng, 0L
Ren, Zebin, 0R
Sheng, Xing, 01
Si, Lei, 1D
Song, Hong-Wei, 0X
Song, Jinian, 0U
Song, Yinglin, 0L, 0N
Su, Jingqin, 0Z
Sun, Bing, 0K
Sun, Feiyiing, 0W
Sun, Quan, 0B
Sun, Xiuhui, 0W
Sun, Yungqiang, 0R
Tan, Rongqiang, 0G
Tan, Tan, 0S
Tan, Yong, 07
Tang, Pan-pan, 0P
Tian, Xiaocheng, 0Z
Wan, Hongdan, 0K
Wang, Chenglin, 0E
Wang, Deyan, 1E
Wang, Di, 04
Wang, Haitao, 0L
Wang, Han, 0U
Wang, Hong-yiing, 0D
Wang, Hongyuan, 1B, 1A
Wang, Ji, 05, 06
Wang, Jun, 08
Wang, Kunpeng, 0E
Wang, Lei, 0A, 0I
Wang, Qi, 10
Wang, Qian, 09
Wang, Qingsheng, 02, 11
Wang, Shan Shan, 16
Wang, Shunyan, 1B, 1A
Wang, Xi, 02, 0A
Wang, Xiao-lin, 1D
Wang, Xin, 09
Wang, Xingshu, 08
Wang, Xueping, 12
Wang, Y. W., 0T
Wang, Yanwei, 13, 17
Wang, You, 1B, 1A
Wang, Yu, 13
Wei, Xiaofeng, 1G
Wei, Zhi, 04
Wu, Chen-Wu, 0X
Wu, Min, 0M
Wu, Peng, 0W
Wu, Xing-zhi, 0L
Wu, Yanqun, 0B
Wu, Yulong, 0V, 1F, 1H
Xia, Liangping, 0W
Xia, Zheng, 0M
Xiao, Hong, 0H
Xiao, Zhengguo, 0N
Xie, Xiaogang, 0C
Xin, Z. D., 0T
Xu, Jiangming, 0F
Xu, Li, 0V, 1F
Xu, Xiaojun, 0B
Xu, Xinrui, 0Y
Xu, Y. Y., 0T
Xu, Yamei, 0J, 12
Xue, Liangping, 18, 1A
Yan, Boxia, 13, 17
Yan, Renpeng, 1E
Yang, Chao, 0S
Yang, Daquan, 1B
Yang, Junbo, 15
Yang, Junyi, 0L, 0N
Yang, Sen-lin, 0D
Yang, Yujie, 1B
Yang, Zheng, 0W
Ye, Jun, 0F
Yi, Qing, 0G
Yin, Shaoyun, 0W
Yu, Hui, 0O
Yu, Miao, 05, 06
Yu, Xiang-yang, 19
Yuan, Haoyu, 02
Yue, Yufang, 0C
Zhang, Feizhou, 0C
Zhang, Hanwei, 0F
Zhang, Jing, 13
Zhang, L., 0T
Zhang, Lin, 0K
Zhang, Rui, 0Z
Zhang, Wei, 18, 1A
Zhang, Yan, 0E
Zhang, Youwei, 0N
Zhang, Zuxing, 0K
Zhao, Duliang, 11
Zhao, Hongyu, 04
Zhao, Pengfei, 0V, 1F, 1H
Zhao, Tianzhuo, 0H
Zhao, Xiaoxia, 0D
Zheng, H. R., 0T
Zheng, Kuixing, 0G
Zheng, Wangguo, 0Z, 1G
Zheng, Yijun, 0G
Zhi, Dong, 1D
Zhou, Jie, 18, 1A
Zhou, Pu, 0F, 1D
Zhou, Ruixi, 0Q
Zhou, Siyiing, 0E
Zhou, Zhigang, 0Y
Zhou, Zhongxiang, 1E
Zhu, Gao Chao, 16
Zhu, Jing, 08
Zhu, Qihua, 0Z
Zou, Yonggang, 0V, 1F, 1H
Zou, Yongming, 0F
Conference Committee

Conference Chairs

Shibin Jiang, AdValue Photonics, Inc. (United States)
Lijun Wang, Changchun Institute of Optics, Fine Mechanics and Physics, CAS (China)
Chun Tang, Institute Applied Electronics, China Academy of Engineering Physics (China)
Jurgen Michel, Massachusetts Institute of Technology (United States)
Zhiping Zhou, Peking University (China)

Conference Committee

Xingsheng Liu, Focuslight Technologies (China)
Yong Cheng, Wuhan Mechanical College (China)
Daoxin Dai, Zhejiang University (China)
Jifeng Liu, Thayer School of Engineering at Dartmouth (United States)
Juejun Liu, Massachusetts Institute of Technology (United States)

Program Committee

Zhiyi Wei, Institute of Physics, CAS (China)
Wanhua Zheng, Institute of Semiconductors, CAS (China)
Minghao Qi, Purdue University (United States)
Yikai Su, Shanghai Jiao Tong University (China)
Xinliang Zhang, Huazhong University of Science and Technology (China)
Introduction

We had the great honor of organizing the International Symposium on High Power Lasers and High Energy Lasers and the International Symposium on Silicon-Based Photonic Integration. It was truly a great pleasure for us to greet the more than 1000 participants from many different countries that attended these two symposia. We firmly believe the symposia will become important international events in the field of optical technology.

The International Symposium on High Power Lasers and High Energy Lasers and the International Symposium on Silicon-Based Photonic Integration were sponsored by the Chinese Society for Optical Engineering and China High-tech Industrialization Association (CHIA), organized by the Chinese Society for Optical Engineering (CSOE), Photoelectronic Technology Committee, the Chinese Society of Astronautics, Photo-electronic Industrialization Committee, CHIA, and the Department of Cooperation and Coordination for Industry, Academe, and Research, CHIA.

The purpose of the two symposia is to provide a forum for the participants to report and review innovative ideas and up-to-date progress and developments, and discuss the novel approaches to application in the optical field. It is sincerely hoped that the research and development in the optical field will be promoted, and the international cooperation in sharing the common interest will be enhanced.

On behalf of the other chairmen, and the organization committee of these two conferences, we would like to heartily thank our sponsors and cooperating organizations for all they have done for the symposia. Thanks also to all the authors for their contributions to the proceedings; to all of the participants and friends for their interest and efforts in helping us to make the symposia possible; to the Program Committee for their effective work and valuable advice; especially the Secretariat, and to the SPIE staff for their tireless efforts and outstanding service in preparing the symposia and publishing the proceedings.

Lijun Wang
Zhiping Zhou