Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>ix</td>
<td>Authors</td>
</tr>
<tr>
<td>xiii</td>
<td>Conference Committee</td>
</tr>
<tr>
<td>xvii</td>
<td>Introduction</td>
</tr>
</tbody>
</table>

PLENARY SESSION

<table>
<thead>
<tr>
<th>Session</th>
<th>Paper Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10170 02</td>
<td>Predictive simulation of guide-wave structural health monitoring (Plenary Paper) [10170-500]</td>
</tr>
</tbody>
</table>

SESSION 1 COMPOSITE MONITORING I

<table>
<thead>
<tr>
<th>Session</th>
<th>Paper Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10170 04</td>
<td>Infrared thermography to impact damaging of composite materials [10170-2]</td>
</tr>
<tr>
<td>10170 05</td>
<td>Assessment of delamination in composite beam using infrared thermography, optical sensors and terahertz technique [10170-3]</td>
</tr>
<tr>
<td>10170 06</td>
<td>Shear sensing in bonded composites with cantilever beam microsensors and dual-plane digital image correlation [10170-4]</td>
</tr>
</tbody>
</table>

SESSION 2 COMPOSITE MONITORING II

<table>
<thead>
<tr>
<th>Session</th>
<th>Paper Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10170 07</td>
<td>Full-field ultrasonic inspection for a composite sandwich plate skin-core debonding detection using laser-based ultrasonics [10170-5]</td>
</tr>
<tr>
<td>10170 08</td>
<td>Assessment of damage in ‘green’ composites [10170-6]</td>
</tr>
<tr>
<td>10170 09</td>
<td>A constructive nonlinear array (CNA) method for barely visible impact detection in composite materials [10170-7]</td>
</tr>
<tr>
<td>10170 0B</td>
<td>Evaluation of adhesively bonded composites by nondestructive techniques [10170-9]</td>
</tr>
</tbody>
</table>

SESSION 3 METAMATERIAL I

<table>
<thead>
<tr>
<th>Session</th>
<th>Paper Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10170 0F</td>
<td>A disorder-based strategy for tunable, broadband wave attenuation [10170-13]</td>
</tr>
<tr>
<td>10170 0J</td>
<td>Simultaneous life extension and crack monitoring of fatigue-damaged steel members using multifunctional carbon nanotube based composites [10170-128]</td>
</tr>
</tbody>
</table>
SESSION 4 METAMATERIAL II

<table>
<thead>
<tr>
<th>Session 4</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10170 0M</td>
<td>Isotropic transformation acoustics and applications [10170-20]</td>
<td></td>
</tr>
</tbody>
</table>

SESSION 5 ADVANCEMENTS IN MODELING

<table>
<thead>
<tr>
<th>Session 5</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10170 0O</td>
<td>Parametric studies for semi-analytical investigation of plate-mounted resonators [10170-22]</td>
<td></td>
</tr>
<tr>
<td>10170 0P</td>
<td>Application of distributed point source method (DPSM) to wave propagation in anisotropic media [10170-23]</td>
<td></td>
</tr>
<tr>
<td>10170 0Q</td>
<td>Computational wave field modeling in anisotropic plate [10170-24]</td>
<td></td>
</tr>
<tr>
<td>10170 0R</td>
<td>Optimization of multi-scale modelling of CNT/polymer composite strain sensors [10170-25]</td>
<td></td>
</tr>
</tbody>
</table>

SESSION 6 BIOINSPIRED SHM AND BIOMATERIAL MONITORING

<table>
<thead>
<tr>
<th>Session 6</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10170 0T</td>
<td>Dual-frequency transducer with a wideband PVDF receiver for contrast-enhanced, adjustable harmonic imaging [10170-27]</td>
<td></td>
</tr>
<tr>
<td>10170 0V</td>
<td>Development of an aerosol PZT actuator for a scanner system [10170-29]</td>
<td></td>
</tr>
<tr>
<td>10170 0W</td>
<td>Design, analysis, and fabrication of a piezoelectric force plate [10170-30]</td>
<td></td>
</tr>
<tr>
<td>10170 0Z</td>
<td>Development and testing of a multi-transducer system for measuring height of condensed water in steam pipes with steady-state and turbulent flow conditions [10170-35]</td>
<td></td>
</tr>
</tbody>
</table>

SESSION 7 REAL-TIME SENSING AND TESTING AT EXTREME ENVIRONMENTS

<table>
<thead>
<tr>
<th>Session 7</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10170 12</td>
<td>NIR intensity sensor for water pressure monitoring [10170-36]</td>
<td></td>
</tr>
<tr>
<td>10170 14</td>
<td>Development of BS-PT based high temperature ultrasonic transducer [10170-38]</td>
<td></td>
</tr>
<tr>
<td>10170 16</td>
<td>Signal denoising using stochastic resonance and bistable circuit for acoustic emission-based structural health monitoring [10170-17]</td>
<td></td>
</tr>
</tbody>
</table>

SESSION 8A METAMATERIAL III

<table>
<thead>
<tr>
<th>Session 8A</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10170 18</td>
<td>A mechanical power dissipation model for axially loaded metamaterial bars [10170-41]</td>
<td></td>
</tr>
<tr>
<td>10170 1A</td>
<td>Nonlinear dynamics of bistable lattices with defects [10170-43]</td>
<td></td>
</tr>
</tbody>
</table>
SESSION 8B GUIDED WAVES I: CIVIL INFRASTRUCTURES MONITORING

Session 8B 1B	Ultrasonic damage imaging of structural components with bulk and guided waves using match coefficients [10170-44]
Sessions 8B 1C	Nondestructive assessment of waveguides using an integrated electromechanical impedance and ultrasonic waves approach [10170-45]
Sessions 8B 1D	Guided wave attenuation in composite materials [10170-46]
Sessions 8B 1E	Guided waves based SHM systems: parameters selection for better identification and localisation of damages in composites stiffened plates [10170-47]

SESSION 9A METAMATERIAL IV

Session 9A 1F	An analytical model for band gap behavior in lumped elastic metamaterials [10170-48]
Sessions 9A 1I	Acoustic vortex beam generation using a compact metamaterial aperture [10170-51]
Sessions 9A 1J	Analyzing the frequency band gap in functionally graded materials with harmonically varying material properties [10170-52]
Sessions 9A 1K	Scattering of longitudinal acoustic phonons in thin silicon membranes [10170-53]
Sessions 9A 1L	Smart Kirigami open honeycombs in shape changing actuation and dynamics [10170-54]

SESSION 9B GUIDED WAVES II: MEASUREMENT, DAMAGE DETECTION, AND SCATTERING

Session 9B 1N	Directionality of A_0 Lamb wave mode scattering at defects [10170-56]
Sessions 9B 1O	Guided wave scattering by a geometrical or damage feature: application to fatigue crack and machined notch [10170-57]
Sessions 9B 1Q	Lamb wave interaction at debondings due to impact damage in complex stiffened CFRP structures [10170-59]
Sessions 9B 1S	Laser Doppler velocimetry and PZT sensing for the study of guided waves in a stepped aluminum plate [10170-61]
Sessions 9B 1U	Nonlinear dispersion effects in elastic plates: numerical modelling and validation [10170-63]

SESSION 10A NONLINEAR TECHNIQUES

| Session 10A 1X | A three-dimensional analytical model for interpreting contact acoustic nonlinearity generated by a “breathing” crack [10170-66] |
| Sessions 10A 1Y | Fatigue crack detection by nonlinear spectral correlation with a wideband input [10170-67] |
Numerical investigation of nonlinear interactions between multimodal guided waves and delamination in composite structures [10170-68]

Analysis of debonding in single lap joints based on employment of ultrasounds [10170-69]

SESSION 10B MODELING FOR METAMATERIAL AND GUIDED WAVES

10170 21 Spectral element method implementation on GPU for Lamb wave simulation [10170-70]

10170 22 On the assumption of transverse isotropy of a honeycomb sandwich panel for NDT applications [10170-71]

10170 23 Local numerical modelling of ultrasonic guided waves in linear and nonlinear media [10170-72]

10170 24 Coupled electromechanical modeling of piezoelectric disc transducers for low-frequency ultrasonic collimated beam generation [10170-73]

SESSION 11A ACOUSTIC EMISSION

10170 27 Reflective SOA-based fiber Bragg grating ultrasonic sensing system with two wave mixing interferometric demodulation [10170-76]

10170 28 Acoustic emission source modeling in a plate using buried moment tensors [10170-77]

10170 29 Probabilistic location estimation of acoustic emission sources in isotropic plates with one sensor [10170-78]

10170 2A Analysis of acoustic emission waveforms from fatigue cracks [10170-79]

SESSION 11B GUIDED WAVES III: ADVANCED MATERIAL MONITORING

10170 2B High frequency guided wave propagation in monocrystalline silicon wafers [10170-80]

10170 2D Combined vibration and guided wave-based approach for composite panels health assessment [10170-82]

10170 2E Numerical modeling of the load effect on PZT-induced guided wave for load compensation of damage detection [10170-83]

SESSION 12A CIVIL INFRASTRUCTURE I: MEASUREMENT OPTIMIZATION AND APPLICATION

10170 2F Optimal sensor placement for parameter estimation of bridges [10170-92]

10170 2G An application of prospect theory to a SHM-based decision problem [10170-84]
10170 2H Structural damage identification with multi-objective DIRECT algorithm using natural frequencies and single mode shape [10170-85]

10170 2I Monitoring progressive changes in cementitious materials using embedded piezo-sensors [10170-87]

SESSION 12B OPTICAL AND THERMAL TECHNIQUES FOR CIVIL INFRASTRUCTURE MONITORING

10170 2K Application of the normalized curvature ratio to an in-service structure [10170-89]

10170 2L Effect of out-of-plane specimen movement on the accuracy of the smallest specimen strain measurable using the digital image correlation technique [10170-90]

10170 2M Uncertainty quantification of phase-based motion estimation on noisy sequence of images [10170-91]

10170 2N Study on evaluation of corrosion condition of reinforcing bar embedded concrete using infrared thermal imaging camera [10170-93]

SESSION 13A CIVIL INFRASTRUCTURE II: MATERIALS AND STRUCTURES

10170 2P Monitoring of prestress losses using long-gauge fiber optic sensors [10170-95]

10170 2Q System identification of timber masonry walls using shaking table test [10170-96]

10170 2R Abnormal behavior detection algorithm of infra-structure using unfamiliarity index [10170-98]

10170 2S Comparison of two novel types of sensor to monitor the strain of concrete in F-T tests [10170-99]

10170 2U Development of a real-time bridge structural monitoring and warning system: a case study in Thailand [10170-101]

10170 2V Experimental validation of a structural damage detection method based on marginal Hilbert spectrum [10170-102]

SESSION 13B EMERGING AND FUTURISTIC TECHNIQUES AND ISSUES

10170 2W Moisture contamination detection in adhesive layer using embedded fibre Bragg grating sensors [10170-103]

10170 2Y Temperature dependence of electromechanical impedance based bond-line integrity monitoring [10170-105]

10170 2Z A load identification sensor based on distributed fiber optic technology [10170-106]
POSTER SESSION

10170 32 Fatigue crack monitoring of aerospace structure based on binary tree support vector machines [10170-110]

10170 33 Non-destructive monitoring of a prestressed bridge with a data-driven method [10170-111]

10170 34 Nuclear power plant prestressed concrete containment vessel structure monitoring during integrated leakage rate test using three kinds of fiber optic sensors [10170-112]

10170 37 A novel nonlinear damage resonance intermodulation effect for structural health monitoring [10170-115]

10170 38 Numerical simulation on the temperature behavior of the main cable for suspension bridge [10170-116]

10170 39 Damage estimation of sewer pipe using subtitles of CCTV inspection video [10170-117]

10170 3A Monitoring of impact dynamics on carbon nanotube multiscale glass fiber composites by means of electrical measurements [10170-118]

10170 3B A comparative study on book shelf structure based on different domain modal analysis [10170-119]

10170 3E Performance assessment of engineering structures based on long-gauge FBG sensors: a review [10170-122]

10170 3G Automated vehicle counting using image processing and machine learning [10170-124]

10170 3H Using LabView for real-time monitoring and tracking of multiple biological objects [10170-125]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abdel-Jaber, Hiba, 2P
Ahmed, Shafique, 0J
Al Ba'ba'a, H., 1B, 1F
Ameduri, S., 22
Ansari, M.h., 1J
Anton, Steven R., 0W
Arieta, Andres F., 1A
Bach, M., 1Q
Badescu, Mircea, 0Z
Bagchi, Ashutosh, 2Q, 2V, 3B
Banerjee, S., 0Q
Banerji, Srishti, 2V
Bao, Jingjing, 2A
Bar-Cohen, Yoseph, 0Z
Baur, Jeffery W., 06
Berthe, Laurent, 08
Bilynsky, Yosyp Y., 3H
Blacha, Izabela, 0R
Boccardi, Simone, 04
Borda, Natalino D., 04, 1E, 1S
Bolognani, Denise, 2G
Bond, Leonard J., 14, 2Y
Bouilla Mora, Veronica, 2W
Bouslama, Nidhal, 1O
Bouthe, Michel, 08
Calvo, David C., 11
Cao, Maosen, 2D
Cao, Pei, 2H
Cappello, Carlo, 2G
Cardella, Davide, 0F
Carlomagno, Giovanni M., 04
Celli, Paolo, 0F
Cervantes, William, 0Z
Chen, Lan, 38
Chen, Ling-Chih, 12
Chen, Peng-Jyun, 0V
Chen, Shizhi, 3E
Chillara, Vamshi Krishna, 24
Chocinski-Arnaut, Laurence, 08
Chong, See Yenn, 07
Ciampa, Francesco, 37
Ciminello, M., 22
Cinquemani, Simone, 3A
Concilio, A., 22
Dayton, Paul A., 0T
Desai, Niranjan, 2L
de Vasconcellos, Davi, 08
Ding, Yanbeng, 2S
Ebrahimkhanlou, Arvin, 29
Ecault, Romain, 0B
Eckstein, B., 1Q
Eskew, Edward, 2F, 3G
Fooladi, Samaneh, 0P
Fritzen, C.-P., 1Q
Fromme, Paul, 1N, 2B
Gelda, Dhruv, 1K
Ghossoub, Marc G., 1K
Gurgiutlu, Victor, 02, 2B, 2A
Glisc, Branko, 2G, 2K, 2P
Gonella, Stefano, 0F
Grabowski, Krzysztof, 0R
Guemes, Alfredo, 3A
Guerreiro, Luis, 2Q
Guld, Matthew D., 1I
Hane, Ryan L., 1E
Hong, Wan, 3E
Hoummadi, Elias, 0W
Huang, Zhiguang, 38
Hwang, Myungwon, 1A
Jang, Shinae, 2F, 3G
Jiang, Xiaoning, 0T
Jiménez-Suárez, Alberto, 3A
Joseph, Roshan, 28
Karami, M. Amin, 1J
Khemapech, I., 2U
Kijanka, Piotr, 1U, 23
Kim, Byeongcheol, 2R, 39
Kim, Jinho, 16
Kim, Jinwook, 0T
Kim, Taeheon, 2R, 39
Kliewer, Kaitlyn, 2K
Kocherla, Amarteja, 2I
Kondash, Corey, 06
Kong, Xianglong, 2S, 34
Krasilenko, Vladimir G., 3H
Krishnaswamy, Sridhar, 27
Kudela, Pawel, 1D, 21, 2D
Kundu, Tribikram, 0P
Lanza di Scalea, F., 1B
Leamy, Michael J., 1U, 23
Lee, Hyeong Jae, 0Z
Leng, J., 1L
Li, Jinke, 34
Li, Shengyuan, 2S
Li, Sibo, 0T
Liang, Chunfang, 38
Liao, Kaixing, 2S, 34
Lih, Shyh-Shiuh, 0Z
Limongelli, M. P., 33
Lin, Peipei, 1Y
Lu, Shenbo, 32
Lv, Haifeng, 2S
Ma, Zhaoyun, 1C
Maio, L., 1E, 1S
Majewska, Katarzyna, 05
Mal, Ajit K., 0O, 1S, 22
Malfense Fierro, Gian Piero, 09
Malinowski, Paweł H., 08, 0B, 1D
Mao, Zhu, 2M
Martin, Theodore P., 1I
Martinez-Castro, Rosana, 3G
Maslouhi, Ahmed, 1O
Masserey, Bernard, 2B
Masson, Patrice, 1O
McConnell, Jennifer, 0J
M'Closkey, Robert, 0O
Meany, Sean, 3G
Memmolo, V., 1E, 1S
Meo, Michele, 09, 37
Micheau, Philippe, 1O
Mieloszyk, Magdalena, 05, 2W
Moix Bonet, M., 1Q
Monaco, E., 1E, 1S
Montanini, R., 1B
Naify, Christina J., 1I
Narayanan, Arun, 2I
Nasrollahi, Amir, 2A
Norris, Andrew N., 0M
Norris, Andrew N., 0M
Nouh, M., 1B
Nouh, M., 1B
Oris, Gregor, 1I
Ostachowicz, Wieslaw M., 05, 0B, 1D, 21, 2W
Packo, Pawel, OR, 1U, 23
Pantela, Cristian, 24
Park, Kitea, 2R, 39
Pascual Gonzalez, Pedro, 0B
Pizzolato, Marco, 2B
Poddar, Banibrata, 2A
Poling, Joel, 2L
Qing, Xinlin P., 2E
Quaegebeur, Nicolas, 1O
Quattrocchi, A., 1B
Radecki, Rafal, 1U, 23
Radzienkowski, Maciej, 21, 2D
Rajagopal, Manjunath C., 1K
Ricci, Fabrizio, 04, 1E, 1S
Rizzo, Piervincenzo, 1C
Robyr, Jean-Luc, 2B
Rogers, Jeffrey S., 1I
Rohde, Charles A., 1I
Roy, Timir Baran, 2Q, 2V, 38
Rui, Watanabe, 2N
Russo, Pietro, 04
Sabamehr, Ardalan, 2V, 38
Safaai, Mohsen, 0W
Sala, G., 22
Salamone, Salvatore, 29
Sánchez-Romate, Xoan F., 3A
Sansiri, Anucha, W., 2U
Sarrafi, Aral, 2M
Sbarufatti, Claudio, 3A
Scaccabarozzi, Diego, 3A
Scarpa, F., 1L
Scarselli, Gennaro, 20, 37
Schaal, Christoph, 00, 1S, 22
Schiffl, David, 0V
Schumacher, Thomas, 0J
Seo, Dongwook, 2R, 39
Shen, Yanfeng, 1Z
Shrestha, S., 0Q
Shuai, Qi, 2H
Simeoni, Giorgio, 04
Simonini, Alan, 02
Singh, T., 1F
Singh, Dipen N., 24
Sinha, Sanjiv, 1K
Slinker, Keith, 06
Sohn, Hoon, 1Y
Soman, Rohan, 05, 2W
Sorrentino, Luigi, 08
Starovier, Anzelina, 3H
Staszewski, Wieslaw J., 0R, 1U, 23
Sternini, S., 1B
Su, Xiaoshi, 0M
Su, Zhongqin, 1X
Subramaniam, Kolluru V. L., 2I
Sun, Changsen, 2S, 34
Sun, Hu, 2E
Surace, C., 33
Tai, Steffen, 22
Tang, J., 2H
Thostenson, Erik T., 0J
Tirone, M., 33
Toachooddee, M., 2U
Todd, Michael D., 07
Tonelli, Daniele, 2G
Toshiaki, Mizobuchi, 2N
Touchard, Fabienne, 08
Uhl, Tadeusz, OR, 1U, 23
Ureña, Alejandro, 3A
Valavala, Krishna V., 1K
Verzobio, Andrea, 2G
Victor, Jared J., 07
Wandowski, Tomasz, 08, 1D, 21
Wang, K. W., 16
Wang, Kai, 1X
Wang, Wei-Chih, 0V, 12
Wang, Yishou, 2E
Wei, Heming, 27
Wei, Xu, 2D
Wu, Chun-Wei, 12
Wu, Wen-Jong, 0V
Yoo, David, 2H
Yuan, Shenfang, 1X
Zhang, Aijia, 2E
Zhang, Weiting, 0F
Zhao, Xuefeng, 2S, 34
Zhou, Li, 32
Zhou, Linren, 38
Zonta, Daniele, 2G
Conference Committee

Symposium Chairs

Jayanth N. Kudva, NextGen Aeronautics, Inc. (United States)
Theodoros E. Matikas, University of Ioannina (Greece)

Symposium Co-chairs

Tribikram Kundu, The University of Arizona (United States)
Gregory W. Reich, Air Force Research Laboratory (United States)

Conference Chair

Tribikram Kundu, The University of Arizona (United States)

Conference Co-chair

Paul Fromme, University College London (United Kingdom)

Conference Program Committee

Hoda Azari, U.S. Dept. of Transportation (United States)
Sourav Banerjee, University of South Carolina (United States)
Yoseph Bar-Cohen, Jet Propulsion Laboratory (United States)
Fu-Kuo Chang, Stanford University (United States)
Anthony J. Croxford, University of Bristol (United Kingdom)
Victor Giurgiutiu, University of South Carolina (United States)
Srinivasan Gopalakrishnan, Indian Institute of Science (India)
Wolfgang Grill, Universität Leipzig (Germany)
Guoliang Huang, University of Missouri (United States)
Xiaoning Jiang, North Carolina State University (United States)
Ajay M. Kshtri, NASA Johnson Space Center (United States)
Sridhar Krishnaswamy, Northwestern University (United States)
Francesco Lanza di Scalea, University of California, San Diego (United States)
Zhu Mao, University of Massachusetts Lowell (United States)
Christopher Niezrecki, University of Massachusetts Lowell (United States)
Wieslaw M. Ostachowicz, The Szewalski Institute of Fluid-Flow Machinery (Poland)
Xinlin Qing, Xiamen University (China)
Henrique L. Reis, University of Illinois at Urbana-Champaign (United States)
Fabrizio Ricci, Università degli Studi di Napoli Federico II (Italy)
Piervincenzo Rizzo, University of Pittsburgh (United States)
Hoon Sohn, KAIST (Korea, Republic of)
Wieslaw J. Staszewski, AGH University of Science and Technology (Poland)
Zhongqing Su, The Hong Kong Polytechnic University (Hong Kong, China)
Michael D. Todd, University of California, San Diego (United States)
Tadeusz Uhl, AGH University of Science and Technology (Poland)
Wei-Chih Wang, University of Washington (United States)
Jinkyu Yang, University of Washington (United States)
Lingyu Yu, University of South Carolina (United States)
Andrei N. Zagrai, New Mexico Institute of Mining and Technology (United States)

Session Chairs

1 Composite Monitoring I
 Tribikram Kundu, The University of Arizona (United States)
 Paul Fromme, University College London (United Kingdom)

2 Composite Monitoring II
 Piervincenzo Rizzo, University of Pittsburgh (United States)
 Fabrizio Ricci, Università degli Studi di Napoli Federico II (Italy)

3 Metamaterial I
 Guoliang Huang, University of Missouri (United States)
 Jinkyu Yang, University of Washington (United States)

4 Metamaterial II
 Jinkyu Yang, University of Washington (United States)
 Guoliang Huang, University of Missouri (United States)

5 Advancements in Modeling
 Sourav Banerjee, University of South Carolina (United States)
 Hadi Hafezi, The University of Arizona (United States)

6 Bioinspired SHM and Biomaterial Monitoring
 Wei-Chih Wang, University of Washington (United States)
 Xiaoning Jiang, North Carolina State University (United States)

7 Real-time Sensing and Testing at Extreme Environments
 Tadeusz Uhl, AGH University of Science and Technology (Poland)
 Andrei N. Zagrai, New Mexico Institute of Mining and Technology (United States)
<table>
<thead>
<tr>
<th>Track</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8A</td>
<td>Metamaterial III</td>
<td>Fabio Semperlotti, Purdue University (United States)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mostafa A. Nouh, University at Buffalo (United States)</td>
</tr>
<tr>
<td>8B</td>
<td>Guided Waves I: Civil Infrastructures Monitoring</td>
<td>Xuan Zhu, University of California, San Diego (United States)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hoon Sohn, KAIST (Korea, Republic of)</td>
</tr>
<tr>
<td>9A</td>
<td>Metamaterial IV</td>
<td>Mostafa A. Nouh, University at Buffalo (United States)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabio Semperlotti, Purdue University (United States)</td>
</tr>
<tr>
<td>9B</td>
<td>Guided Waves II: Measurement, Damage Detection, and</td>
<td>Srinivasan Gopalakrishnan, Indian Institute of Science (India)</td>
</tr>
<tr>
<td></td>
<td>Scattering</td>
<td>See Yeun Chong, University of California, San Diego (United States)</td>
</tr>
<tr>
<td>10A</td>
<td>Nonlinear Techniques</td>
<td>Tadeusz Stepinski, AGH University of Science and Technology (Poland)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zhongqing Su, The Hong Kong Polytechnic University (Hong Kong, China)</td>
</tr>
<tr>
<td>10B</td>
<td>Modeling for Metamaterial and Guided Waves</td>
<td>Wieslaw M. Ostachowicz, The Szewalski Institute of Fluid-Flow Machinery (Poland)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lingyu Yu, University of South Carolina (United States)</td>
</tr>
<tr>
<td>11A</td>
<td>Acoustic Emission</td>
<td>Victor Giurgiutiu, University of South Carolina (United States)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sridhar Krishnaswamy, Northwestern University (United States)</td>
</tr>
<tr>
<td>11B</td>
<td>Guided Waves III: Advanced Material Monitoring</td>
<td>Xinlin Qing, Xiamen University (China)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pawel Malinowski, Institute of Fluid-Flow Machinery (Poland)</td>
</tr>
<tr>
<td>12A</td>
<td>Civil Infrastructure I: Measurement Optimization and</td>
<td>Henrique L. Reis, University of Illinois at Urbana-Champaign (United States)</td>
</tr>
<tr>
<td></td>
<td>Application</td>
<td>Ajay M. Koshti, NASA Johnson Space Center (United States)</td>
</tr>
<tr>
<td>12B</td>
<td>Optical and Thermal Techniques for Civil Infrastructure Monitoring</td>
<td>Christopher Niezrecki, University of Massachusetts Lowell (United States)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zhu Mao, University of Massachusetts Lowell (United States)</td>
</tr>
</tbody>
</table>
13A Civil Infrastructure II: Materials and Structures
Paul Fromme, University College London (United Kingdom)
Henrique L. Reis, University of Illinois at Urbana-Champaign (United States)

13B Emerging and Futuristic Techniques and Issues
Wieslaw M. Ostachowicz, The Szewalski Institute of Fluid-Flow Machinery (Poland)
Anthony J. Croxford, University of Bristol (United Kingdom)
Introduction

The emphasis of this conference is to recognize that nondestructive sensing, sensor array design, signal acquisition and transmission, signal processing, energy harvesting etc. are integral parts of health monitoring for both structural and biological systems. I believe that biological and physical science communities are learning from one another by coming to this conference and exchanging ideas. Some of the recent advances in the science and technology of health monitoring techniques that go beyond the traditional nondestructive testing for internal flaw detection are presented in these proceedings. New diagnosis, prognosis, and rehabilitation techniques applied to engineering structures made of metal, concrete, and composites, as well as biological systems are presented. The papers published here cover a wide range of technologies. It is hoped that this conference will stimulate further interactions between physical and life science communities resulting in newer development of more innovative techniques for health monitoring applications.

I am thankful to the program committee members, authors, session chairs, and the SPIE staff for putting together this excellent conference.

Tribikram Kundu