Radar Sensor Technology XXI

Kenneth I. Ranney
Armin Doerry
Editors

10–12 April 2017
Anaheim, California, United States

Sponsored and Published by
SPIE

Volume 10188

SPIE is an international society advancing an interdisciplinary approach to the science and application of light.

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>vii</td>
<td>Authors</td>
<td>ix</td>
</tr>
<tr>
<td>ix</td>
<td>Conference Committee</td>
<td></td>
</tr>
<tr>
<td>APPLICATIONS AND EXPLOITATION I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10188 02</td>
<td>Passive coherent location direct signal suppression using hardware mixing techniques [10188-1]</td>
<td></td>
</tr>
<tr>
<td>10188 03</td>
<td>Multistatic passive coherent location resource optimization [10188-2]</td>
<td></td>
</tr>
<tr>
<td>10188 04</td>
<td>Continuous high PRF waveforms for challenging environments [10188-3]</td>
<td></td>
</tr>
<tr>
<td>10188 05</td>
<td>Automatic change detection using very high-resolution SAR images and prior knowledge about the scene [10188-4]</td>
<td></td>
</tr>
<tr>
<td>10188 06</td>
<td>On results using automated wideband instrumentation for radar measurements and characterization [10188-5]</td>
<td></td>
</tr>
<tr>
<td>10188 07</td>
<td>Mapping detailed 3D information onto high resolution SAR signatures [10188-6]</td>
<td></td>
</tr>
<tr>
<td>INDOOR AND URBAN IMAGING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10188 08</td>
<td>A low-cost through-wall FMCW radar for stand-off operation and activity detection [10188-7]</td>
<td></td>
</tr>
<tr>
<td>10188 09</td>
<td>A coherent through-the-wall MIMO phased array imaging radar based on time-duplexed switching [10188-8]</td>
<td></td>
</tr>
<tr>
<td>10188 0A</td>
<td>Theoretical considerations for a dynamic calibration target for through-wall and through-rubble motion-sensing Doppler radar [10188-9]</td>
<td></td>
</tr>
<tr>
<td>10188 0B</td>
<td>Detection and tracking of human targets in indoor and urban environments using through-the-wall radar sensors [10188-10]</td>
<td></td>
</tr>
</tbody>
</table>

QUANTUM RADAR		
10188 0C	Electric and magnetic target polarization in quantum radar [10188-11]	
10188 0D	The Lemur Conjecture [10188-12]	
10188 0E	Quantum geodesy [10188-13]	
Quantum synthetic aperture radar

Quantum imaging for underwater arctic navigation

Passive ghost imaging using caustics modeling

Enhanced sensing and communication via quantum networks

APPLICATIONS AND EXPLOITATION II

Signal processing techniques for the U.S. Army Research Laboratory stepped frequency ultra-wideband radar

RFID antenna design for circular polarization in UHF band

VideoSAR collections to image underground chemical explosion surface phenomena

Noise and LPI radar as part of counter-drone mitigation system measures

Determining the coherence matrix for single look polarimetric SAR data

COMPONENTS AND TECHNOLOGY

Does the central limit theorem always apply to phase noise? Some implications for radar problems

Reconfigurable signal processor designs for advanced digital array radar systems

Linear chirp phase perturbing approach for finding binary phased codes

MICRODOPPLER

The operator approach to the non-uniform Doppler to radar: implications for signal processing

Advanced Doppler radar physiological sensing technique for drone detection

Millimeter-wave micro-Doppler measurements of small UAVs

Micro-Doppler extraction of a small UAV in a non-line-of-sight urban scenario

Classification of micro-Doppler signatures of human aquatic activity through simulation and measurement using transferred learning
PROGRAMS AND SYSTEMS I

10188 0W Fly Eye radar: detection through high scattered media [10188-32]
10188 0X A solid state 94-GHz FMCW Doppler radar demonstrator for cloud profiling [10188-33]
10188 0Y IoSiS: a radar system for imaging of satellites in space [10188-34]
10188 0Z A prototype fully polarimetric 160-GHz bistatic ISAR compact radar range [10188-35]

PROGRAMS AND SYSTEMS II

10188 10 Handheld microwave bomb-detecting imaging system [10188-37]
10188 12 System upgrades and performance evaluation of the spectrally agile frequency-incrementing reconfigurable (SAFIRE) radar system [10188-39]

PROFILES IN RADAR EDUCATION

10188 16 Radar research at The Pennsylvania State University Radar and Communications Laboratory (Invited Paper) [10188-43]
10188 17 Radar research at the University of Kansas (Invited Paper) [10188-44]

NONLINEAR AND COGNITIVE RADAR

10188 18 Cognitive software defined radar: waveform design for clutter and interference suppression [10188-45]
10188 19 Comparison of RF spectrum prediction methods for dynamic spectrum access [10188-46]
10188 1A Linearizing an intermodulation radar transmitter by filtering switched tones [10188-47]

POSTER SESSION

10188 1C An architecture for pre-warping general parametric frequency-modulated radar waveforms [10188-49]
10188 1D Using coherence as a quality measure for complex radar image compression [10188-50]
10188 1E Discriminating spurious signals in radar data using multiple channels [10188-51]
10188 1F Use of unmanned SAR and EO/IR sensor suites for monitoring wildfires [10188-52]
10188 1G Classification of radar jammer FM signals using a neural network [10188-53]
Optimization of neural network architecture for classification of radar jamming FM signals [10188-54]

Using TerraSAR-X satellite data to detect road age and degradation [10188-55]

Initial processing and analysis of forward- and side-looking data from the spectrally agile frequency-incrementing reconfigurable (SAFIRE) radar [10188-56]

A quantum inspired model of radar range and range-rate measurements with applications to weak value measurements [10188-57]

Design and analysis of a multi-passband complex filter for the multiband cognitive radar system [10188-58]

Radar detection of buried targets in coastal environments [10188-59]

Low-elevation tracking technique for X-band unmanned aerial vehicle automatic take-off and landing system [10188-60]

Bearing angle estimation based on synthetic aperture radar (SAR) image [10188-61]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Addison, Stephen R., 0O
Alkhazraji, Emad, 0K
Allen, Christopher, 17
Andersson, Åsa, 0U
Anger, S., 0Y
Anglberger, H., 05, 07
Arnold, Emily, 17
Beaudoin, C. J., 0Z
Bickel, D. L., 1D, 1E
Blasch, Erik, 1O
Blunt, Shannon D., 17, 18
Boutte, David, 0B
Brandsema, Matthew J., 0A, 0C
Brennan, Paul, 09
Brode, Chad M., 1M
Calloway, Terry M., 0L
Chen, Genshe, 1O
Chen, Qingchao, 08, 09
Chetty, Kevin, 08, 09
Cho, M.-H., 1N
Christianson, Andrew J., 02, 03
Clark, John T., 12, 1J
Corbell, Allan, 04
Coulombe, M. J., 02
DeMartinis, G., 0Z
Dill, S., 0Y
Doerny, A. W., 1C, 1D, 1E, 1F
Dogaru, Trajan, 06
Dunkel, R., 1F
Escalante, George, 1K
Flores, Benjamin C., 1G, 1H
Galanos, Daniel T., 12
Gallagher, Kyle A., 19
Garcia Carrillo, Luis R., 0S
Gatesman, A. J., 0Z
Geaga, Jorge V., 0N
Govara, Ashok, 0W, 10
Govoni, Mark A., 06
Goyette, T., 02
Gray, John E., 0O, 0R
Gustavsson, Magnus, 0U
Hale, Richard, 17
Hansen, Jeremiah J., 0R
Hansen, Michael J., 0A
Harrison, Arthur C., 12, 1J
Horgan, T., 0Z
Hu, W.-Y., 1N
Huang, Yih-Ru, 0M
Hui, Rongqiang, 17
Hunter, Robert I., 0X
Irshad, Usama Bin, 0K
Jaroszewski, Steven, 0Y
Javed, Muhammad Sharjeel, 0K
Jendzurski, John R., 0A
Jitrik, Oliverio, 0D, 0E, 0F, 0H
Johansson, Tommy, 0U
Jonsson, Rolf, 0U
Kaiser, Sean A., 02, 03
Kanugo, Jayanth, 0H
Karlsson, Nils, 0U
Kempf, T., 05
Keshmiri, Shahriar, 17
Khan, Muhammad Talal Ali, 0K
Kim, Youngwook, 0V
Kirk, Benjamin H., 18
Kirose, Getachew A., 12, 1J
Kovarskiy, Jacob A., 19
Lanzagorta, Marco, 0C, 0D, 0E, 0F, 0G, 0H
Le, Calvin, 06
Lee, Hua, 0B
Lee, Hua-Chin, 1L
Leusch, Carlton, 17
Li, Bing C., 0Q
Li, Jiliu, 17
Lin, M.-Y., 1N
Lin, S.-Y., 1N
Lok, Lai Bun, 09
Longepe, Nicolas, 11
Martone, Anthony F., 18, 19, 1A
Mazzaro, Gregory J., 1A
Mendoza, Ariadna, 1G, 1H
Molchanov, Pavlo, 0W, 10
Moon, Taesup, 0V
Narayanan, Ram M., 02, 03, 0A, 0C, 12, 16, 18, 19, 1J, 1M
Necsoiu, Marius, 11
Nguyen, Lam, 0J, 1J
Nilsson, Stefan, 0U
Nixon, William E., 0Z
Owen, Jonathan W., 18
Paden, John, 17
Parshar, Aditya, 0H
Park, Jinhee, 0V
Parks, Allen D., 0R
Parr, Jorge O., 11
Paultre, Nicholas G., 0A
Peichl, M., 0Y
Conference Committee

Symposium Chair
Donald A. Reago Jr., U.S. Army Night Vision & Electronic Sensors Directorate (United States)

Symposium Co-chair
Arthur A. Morrish, Raytheon Space and Airborne Systems (United States)

Conference Chairs
Kenneth I. Ranney, U.S. Army Research Laboratory (United States)
Armin Doerry, Sandia National Laboratories (United States)

Conference Program Committee
Fauzia Ahmad, Temple University (United States)
Moeness G. Amin, Villanova University (United States)
Joseph C. Deroba, U.S. Army CERDEC Intelligence and Information Warfare Directorate (United States)
Mark Govoni, U.S. Army CERDEC Intelligence and Information Warfare Directorate (United States)
John E. Gray, Naval Surface Warfare Center Dahlgren Division (United States)
Majeed Hayat, The University of New Mexico (United States)
Volker Horndt, General Atomics Aeronautical Systems, Inc. (United States)
Chandra Kambhamettu, University of Delaware (United States)
Seong-Hwoon Kim, Raytheon Space & Airborne Systems (United States)
Marco O. Lanzagorta, U.S. Naval Research Laboratory (United States)
Changzhi Li, Texas Tech University (United States)
Jenshan Lin, University of Florida (United States)
Ronald D. Lipps, U.S. Naval Research Laboratory (United States)
David G. Long, Brigham Young University (United States)
Neeraj Magotra, Western New England University (United States)
Anthony F. Martone, U.S. Army Research Laboratory (United States)
Gregory J. Mazzaro, The Citadel-The Military College of South Carolina (United States)
George J. Moussally, Mirage Systems (United States)
Ram M. Narayanan, The Pennsylvania State University (United States)
Lam H. Nguyen, U.S. Army Research Laboratory (United States)
Hector A. Ochoa, The University of Texas at Tyler (United States)
Thomas Pizzillo, U.S. Naval Research Laboratory (United States)
Zhijun G. Qiao, The University of Texas-Pan American (United States)
Ann M. Raynal, Sandia National Laboratories (United States)
Jerry Silvious, U.S. Army Research Laboratory (United States)
David Tahmoush, U.S. Naval Research Laboratory (United States)
Russell Vela, Air Force Research Laboratory (United States)
Frank Yakos, SELEX Galileo, Inc. (United States)
Yan Zhang, The University of Oklahoma (United States)
Ruolin Zhou, Western New England University (United States)

Session Chairs

1 Applications and Exploitation I
Seong-Hwoon Kim, Raytheon Space and Airborne Systems (United States)

2 Indoor and Urban Imaging
Kyle A. Gallagher, The Pennsylvania State University (United States)
Gregory J. Mazzaro, The Citadel-The Military College of South Carolina (United States)

3 Quantum Radar
Marco O. Lanzagorta, U.S. Naval Research Laboratory (United States)
Salvador Elias Venegas-Andraca, Tecnológico de Monterrey (Mexico)

4 Applications and Exploitation II
Ann Marie Raynal, Sandia National Laboratories (United States)

5 Components and Technology
Gregory J. Mazzaro, The Citadel-The Military College of South Carolina (United States)
Brian R. Phelan, The Pennsylvania State University (United States)

6 MicroDoppler
Lam H. Nguyen, U.S. Army Research Laboratory (United States)

7 Programs and Systems I
Mark A. Govoni, U.S. Army CERDEC Intelligence and Information Warfare Directorate (United States)
David Tahmoush, U.S. Naval Research Laboratory (United States)
8 Programs and Systems II
Mark A. Govoni, U.S. Army CERDEC Intelligence and Information Warfare Directorate (United States)
David Tahmoush, U.S. Naval Research Laboratory (United States)

9 Keynote Session
Kenneth I. Ranney, U.S. Army Research Laboratory (United States)
Armin W. Doerry, Sandia National Laboratories (United States)

10 Profiles in Radar Education
Kenneth I. Ranney, U.S. Army Research Laboratory (United States)
Armin W. Doerry, Sandia National Laboratories (United States)

11 Nonlinear and Cognitive Radar
Ram M. Narayanan, The Pennsylvania State University (United States)