Classification in LIDAR data is the process of determining points on terrain types and objects, often with the goal of determining land use and/or building footprints. In this paper we endeavor to classify terrain types and objects at a high level of detail in a complex scene that includes buildings, forested areas, and steep hillsides. Our object classes include buildings, building rooftop structures, forest trees, landscape trees, landscape bushes, cars, light posts of varying sizes, fences, paved surfaces, and grass. Our classification method of choice is a Random Forest, but we also investigate other machine learning methods including K-Nearest Neightbors and Linear Discriminant Analysis. We evaluate the effectiveness of the algorithms for accuracy, required training sample size, and runtime.
|