Translator Disclaimer
7 June 2017 High-temperature diode laser pumps for directed energy fiber lasers (Conference Presentation)
Author Affiliations +
Abstract
Kilowatt-class fiber lasers and amplifiers are becoming increasingly important building blocks for power-scaling laser systems in various different architectures for directed energy applications. Currently, state-of-the-art Yb-doped fiber lasers operating near 1060 nm operate with optical-to-optical power-conversion efficiency of about 66%. State-of-the-art fiber-coupled pump diodes near 975 nm operate with about 50% electrical-to-fiber-coupled optical power conversion efficiency at 25C heatsink temperature. Therefore, the total system electrical-to-optical power conversion efficiency is about 33%. As a result, a 50-kW fiber laser will generate 75 kW of heat at the pump module and 25 kW at the fiber laser module with a total waste heat of 100 kW. It is evident that three times as much waste heat is generated at the pump module. While improving the efficiency of the diodes primarily reduces the input power requirement, increasing the operating temperature primarily reduces the size and weight for thermal management systems. We will discuss improvement in diode laser design, thermal resistance of the package as well as improvement in fiber-coupled optical-to-optical efficiency to achieve high efficiency at higher operating temperature. All of these factors have a far-reaching implication in terms of significantly improving the overall SWAP requirements thus enabling DEW-class fiber lasers on airborne and other platforms.
Conference Presentation
© (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Manoj Kanskar, Ling Bao, Zhigang Chen, Mark DeVito, Weimin Dong, Mike P. Grimshaw, Xinguo Guan, David M. Hemenway, Robert Martinsen, Jim Zhang, and Shiguo Zhang "High-temperature diode laser pumps for directed energy fiber lasers (Conference Presentation)", Proc. SPIE 10192, Laser Technology for Defense and Security XIII, 101920F (7 June 2017); https://doi.org/10.1117/12.2263699
PROCEEDINGS
PRESENTATION ONLY


SHARE
Advertisement
Advertisement
Back to Top