Contents

vii Authors
ix Conference Committee

SESSION 1 FIBER OPTIC SENSING FOR AEROSPACE

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Session Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>10208 02</td>
<td>Mars or bust! 40 years of fiber optic sensor development (Invited Paper)</td>
<td>10208-1</td>
</tr>
<tr>
<td>10208 03</td>
<td>Optical frequency domain reflectometry for aerospace applications</td>
<td>10208-2</td>
</tr>
<tr>
<td>10208 05</td>
<td>Improvement of the extinction ratio performance of a fiber laser based rangefinder by using successive real-time statistical algorithms</td>
<td>10208-4</td>
</tr>
</tbody>
</table>

SESSION 2 INTERFEROMETRIC AND GYROSCOPE SENSORS

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Session Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>10208 06</td>
<td>Modeling of thermal sensitivity of a fiber optic gyroscope coil with practical quadrupole winding</td>
<td>10208-5</td>
</tr>
<tr>
<td>10208 07</td>
<td>Fiber optic gyroscope coils: performance characterization</td>
<td>10208-6</td>
</tr>
<tr>
<td>10208 08</td>
<td>An interferometric sensor based on visibility modulation</td>
<td>10208-7</td>
</tr>
</tbody>
</table>

SESSION 3 NEW AVENUES IN FIBER OPTIC SENSING

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Session Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>10208 0A</td>
<td>Improvement of light confinement in nanostructured sapphire optical fibers</td>
<td>10208-9</td>
</tr>
<tr>
<td>10208 0C</td>
<td>Modified single crystal fibers for distributed sensing applications</td>
<td>10208-11</td>
</tr>
<tr>
<td>10208 0D</td>
<td>Simultaneous transmission of the high-power phase sensitive OTDR, 100Gbps dual polarisation QPSK, accurate time/frequency, and their mutual interferences</td>
<td>10208-13</td>
</tr>
</tbody>
</table>

SESSION 4 DISTRIBUTED FIBER OPTIC SENSING

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Session Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>10208 0E</td>
<td>SNR improvement in a Raman based distributed temperature sensing system using a stimulated Raman scattering filter</td>
<td>10208-14</td>
</tr>
<tr>
<td>10208 0G</td>
<td>Deep learning based multi-threat classification for phase-OTDR fiber optic distributed acoustic sensing applications</td>
<td>10208-16</td>
</tr>
<tr>
<td>10208 0I</td>
<td>Fiber optic sensors for distributed monitoring of soil and groundwater during in-situ thermal remediation</td>
<td>10208-41</td>
</tr>
</tbody>
</table>
SESSION 5 APPLICATIONS OF FIBER OPTIC SENSORS FOR HARSH ENVIRONMENTS

10208 0J Adapting optical technology to dynamic energy prices: fiber-optic sensing in the contemporary oil field (Invited Paper) [10208-18]

10208 0K The evolution of optical fiber cable design for sensor applications [10208-19]

10208 0L In-situ Raman investigation of optical fiber glass structural changes at high temperature [10208-20]

10208 0M Relative acoustic sensitivity of standard telecom and specialty optical fiber cables for distributed sensing [10208-22]

10208 0N Applications of fiber optic sensors for heavy oil production [10208-23]

SESSION 6 FIBER BRAGG GRATING SENSORS

10208 0O Ultrafast photonic systems for FBG sensing in detonation and shock wave experiments (Invited Paper) [10208-24]

10208 0P Optimization of fiber Bragg grating parameters for sensing applications (Invited Paper) [10208-25]

10208 0Q Force and pressure sensing using fiber grating sensors [10208-26]

10208 0R Performance assessment of a fiber Bragg grating sensor network inside a hydro power dam using optical backscatter reflectometry [10208-27]

10208 0T Design, implementation, and characterization of an FBG-emulator for a scanning laser-based fiber-optic interrogator [10208-29]

POSTER SESSION

10208 0U Influence of different encapsulation types and shapes of polydimethylsiloxane on the temperature sensitivity of the FBG [10208-30]

10208 0V Impact of fixing materials on the frequency range and sensitivity of the fiber-optic interferometer [10208-31]

10208 0W Fiber optic sensor encapsulated in polydimethylsiloxane for heart rate monitoring [10208-32]

10208 0X Analysis of the impact of the deposition optical fibers on the deformation measurement with a distributed system BOTDR [10208-33]

10208 0Z Research on an optimized optical fiber accelerometer for well logging [10208-35]

10208 10 Real-time phase demodulation and data administration of distributed optical fiber vibration sensing system [10208-37]
10208 11 Numerical analysis of a new sensing composite structure embedding optical fiber [10208-36]

10208 12 The influence of temperature loading on the optical fiber passive components [10208-38]

10208 13 Various optical fibers fixing methods for mechanical stress measurements [10208-39]

10208 14 Masonry moisture measurement using the distributed temperature sensing system [10208-40]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Akgun, Toygar, 0G
Aktas, Metin, 0G
Alam, Mansoor, 07
Alemohammad, Hamid, 01
Auffray, P., 05
Azhari, Amir, 0I
Baldwin, Chris, 0N
Bastola, B., 0L
Beaty, Noah B., 03
Bednarek, Lukas, 0V, 0X, 12
Bertaux, N., 05
Bessler, Vivian, 0P
Buric, M., 0C
Buyukaydin, Duygu, 0G
Canat, G., 05
Castellucci, Matthew A., 03
Chen, Hui, 0A
Chen, K., 0C
Chen, Wei, 08
Chiquet, F., 05
Chow, Bruce, 0M
Davis, Matthew A., 03
Demircin, Mehmet Umut, 0G
Dong, Yuming, 08
Du, Henry, 0A
Fajkus, Marcel, 0U, 0V, 0W, 0X, 12, 13, 14
Fischer, B., 0L
Freeland, Riley S., 0M
Gao, Youlin, 0T
Garg, Naman, 03
Godfrey, Alastair, 0M
Gu, Lijuan, 0Z
Gudmundsdottir, Lilja, 07
Hajek, Lukas, 12
Havlis, O., 0D
He, Xiangge, 10
Hines, Mike, 0E
Horvath, T., 0D
Hruby, David, 0V, 0X, 13, 14
Huang, S., 0C
Ibrahim, Selwan K., 0P
Jargus, J., 0U, 0W
Jaros, Jakub, 0V, 0X, 12, 13, 14
Jeans, James W., 03
Jiao, Guohua, 08
Kajnar, Tomas, 13, 14
Karabacak, Devrez M., 0P
Kepak, Stanislav, 14
Khan, Jan Amir, 07
Klug, Ferdinand, 0R
Koch, Alexander W., 0T
Kominski, Dan, 03
Kreger, Stephen T., 03
Kuhnenri, Nader, 0T
Le Flohic, M., 05
Li, Jie, 0E
Liang, Richard, 0I
Lienhart, Werner, 0R
Liu, B., 0C
Liu, Fei, 10
Lu, P., 0C
Lu, Yuanfu, 0B
Lv, Jiancheng, 0B
Maidai, John L., 0J
Martinek, Radek, 0U, 0V, 0W, 0X
Monsberger, Christoph, 0R
Munster, P., 0D
Nedoma, Jan, 0U, 0V, 0W, 0X, 12, 13, 14
Novak, M., 0U, 0W
O'Dowd, John A., 0P
Ogut, Serdar, 06
Ohanian, Osgar John III, 03
Ohodnicki, Paul, 0A, 0C
Osunluk, Berk, 06
Ozbay, Ekrem, 06
Pallier, G., 05
Pedrazzani, J. R., 03
Perecar, Frantisek, 0U, 0X, 12, 13, 14
Poole, Zsolt L., 0A
Poralis, A., 05
Qiu, Mengzhe, 10
Qiu, Xiaokang, 02
Radil, J., 0D
Rahim, Nur Aida Abdul, 03
Rodriguez, George, 0O
Roths, J., 0L
Ruediger, A., 0L
Singer, Johannes M., 0P
Skaljo, E., 0D
Skinner, Neal G., 0J
Smolichca, V., 0C
Stark, Daniel J., 0J
Sun, Xiaoguang, 0E
Templeton, Emily H., 03
Udd Scheel, Ingrid, 02, 0Q
Udd, Eric, 02, 0Q
Vanderka, Ales, 12
Vasinek, Vladimir, 0U, 0V, 0W, 0X, 12, 13, 14
Conference Committee

Symposium Chair

Majid Rabbani, Rochester Institute of Technology (United States)

Symposium Co-chair

Robert Fiete, Harris Corporation (United States)

Conference Chairs

Christopher S. Baldwin, Weatherford International Ltd. (United States)
Gary Pickrell, Virginia Tech (United States)
Henry H. Du, Stevens Institute of Technology (United States)

Conference Co-chairs

Eric Udd, Columbia Gorge Research (United States)
Jerry J. Benterou, Lawrence Livermore National Laboratory (United States)
Anbo Wang, Virginia Polytechnic Institute and State University (United States)

Conference Program Committee

Ole Bang, Danmarks Tekniske Universitet (Denmark)
Eric A. Bergles, BaySpec Inc. (United States)
Kevin Peng Chen, University of Pittsburgh (United States)
Brian Culshaw, University of Strathclyde (United Kingdom)
Sachin Dekate, GE Global Research (United States)
Abdessama Elyamani, Northrop Grumman Navigation Systems (United States)
Xudong Fan, University of Michigan (United States)
Yoel Fink, Massachusetts Institute of Technology (United States)
Todd C. Haber, Micron Optics, Inc. (United States)
Ming Han, University of Nebraska-Lincoln (United States)
Hajime Haneda, National Institute for Materials Science (Japan)
Daniel Homa, Virginia Polytechnic Institute and State University (United States)
Kazuho Hotate, The University of Tokyo (Japan)
Jiri Kanka, Institute of Photonics and Electronics of the ASCR, v.v.i. (Czech Republic)
Gurbinder Kaur, Thapar University (India)
Victor I. Kopp, Chiral Photonics, Inc. (United States)
Katerina Krebber, Bundesanstalt für Materialforschung und -prüfung (Germany)
Stephen T. Kreger, Luna Innovations Inc. (United States)
David A. Krohn, Light Wave Venture Consulting, LLC (United States)
John L. Maida Jr., Halliburton (United States)
Alexis Mendez, MCH Engineering LLC (United States)
Stephen J. Mihaliov, National Research Council Canada (Canada)
Thomas D. Monte, KVH Industries, Inc. (United States)
Glen A. Sanders, Honeywell Technology (United States)
Jasbinder S. Sanghera, U.S. Naval Research Laboratory (United States)
Fei Tian, Stevens Institute of Technology (United States)
Dennis J. Trevor, OFS Laboratories (United States)
Xingwei Wang, University of Massachusetts Lowell (United States)
Reinhardt Willsch, Institut für Photonische Technologien e.V. (Germany)
Hai Xiao, Clemson University (United States)
Yizheng Zhu, Virginia Polytechnic Institute and State University (United States)

Session Chairs

1 Fiber Optic Sensing for Aerospace
 Eric Udd, Columbia Gorge Research LLC (United States)
 Stephen T. Kreger, Luna Innovations Inc. (United States)

2 Interferometric and Gyroscope Sensors
 Ingrid Udd Scheel, Multnomah Falls Research LLC (United States)
 Fei Tian, Stevens Institute of Technology (United States)

3 New Avenues in Fiber Optic Sensing
 Gary Pickrell, Virginia Tech (United States)
 Henry Du, Stevens Institute of Technology (United States)

4 Distributed Fiber Optic Sensing
 Christopher S. Baldwin, Weatherford International Ltd. (United States)
 Xiaoguang Sun, OFS (United States)

5 Applications of Fiber Optic Sensors for Harsh Environments
 Christopher S. Baldwin, Weatherford International Ltd. (United States)
 John L. Maida Jr., Halliburton (United States)

6 Fiber Bragg Grating Sensors
 Alexis Mendez, MCH Engineering LLC (United States)
 George Rodriguez, Los Alamos National Laboratory (United States)