Front Matter: Volume 10214
Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>vii</td>
<td>Authors</td>
<td></td>
</tr>
<tr>
<td>ix</td>
<td>Conference Committees</td>
<td></td>
</tr>
<tr>
<td>xiii</td>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STANDARDS CERTIFICATIONS AND GUIDELINES</td>
<td></td>
</tr>
<tr>
<td>10214 02</td>
<td>A 2016 update on standards and guidelines relevant to thermographers</td>
<td>10214-2</td>
</tr>
<tr>
<td></td>
<td>FIRE ANALYSIS AND DETECTION</td>
<td></td>
</tr>
<tr>
<td>10214 04</td>
<td>Flame filtering and perimeter localization of wildfires using aerial thermal imagery</td>
<td>10214-4</td>
</tr>
<tr>
<td>10214 05</td>
<td>Object localization in handheld thermal images for fireground understanding</td>
<td>10214-5</td>
</tr>
<tr>
<td></td>
<td>ADDITIVE MANUFACTURING I</td>
<td></td>
</tr>
<tr>
<td>10214 07</td>
<td>Measurement of process dynamics through coaxially aligned high speed near-infrared imaging in laser powder bed fusion additive manufacturing</td>
<td>10214-7</td>
</tr>
<tr>
<td></td>
<td>ADDITIVE MANUFACTURING II</td>
<td></td>
</tr>
<tr>
<td>10214 08</td>
<td>Micro-scale thermal imaging of CO₂ absorption in the thermochemical energy storage of Li metal oxides at high temperature</td>
<td>10214-8</td>
</tr>
<tr>
<td>10214 09</td>
<td>Thermal analysis of fused deposition modeling process using infrared thermography imaging and finite element modeling</td>
<td>10214-9</td>
</tr>
<tr>
<td>10214 0A</td>
<td>Life cycle monitoring of lithium-ion polymer batteries using cost-effective thermal infrared sensors with applications for lifetime prediction</td>
<td>10214-10</td>
</tr>
<tr>
<td></td>
<td>BIOLOGICAL AND MEDICAL APPLICATIONS</td>
<td></td>
</tr>
<tr>
<td>10214 0B</td>
<td>Thermographic image analysis for classification of ACL rupture disease, bone cancer, and feline hyperthyroid, with Gabor filters</td>
<td>10214-11</td>
</tr>
<tr>
<td>10214 0D</td>
<td>Non-invasive characterization of normal and pathological tissues through dynamic infrared imaging in the hamster cheek pouch oral cancer model</td>
<td>10214-13</td>
</tr>
</tbody>
</table>
About possibility of temperature trace observing on a human skin through clothes by using computer processing of IR image [10214-14]

Pulse compression favourable aperiodic infrared imaging approach for non-destructive testing and evaluation of bio-materials [10214-16]

NDT AND SIGNAL PROCESSING

Thermal inspection of a composite fuselage section using a fixed eigenvector principal component analysis method [10214-17]

Numerical and experimental analyses for natural and non-natural impacted composites via thermographic inspection, ultrasonic C-scan and terahertz imaging [10214-18]

VIBRO-THROMOGRAPHY AND THERMOMECHANICS

Characterizing open and non-uniform vertical heat sources: towards the identification of real vertical cracks in vibrothermography experiments [10214-21]

Fatigue damage evaluation of short fiber CFRP based on phase information of thermoelastic temperature change [10214-22]

Highly efficient ultrasonic vibrothermography for detecting impact damage in hybrid composites [10214-23]

High-speed and high-definition infrared imaging for material characterization in experimental mechanics [10214-24]

Non-destructive thermo-mechanical behavior assessment of glass-ceramics for dental applications [10214-25]

Energetic approach based on IRT to assess plastic behaviour in CT specimens (Best Student Paper Award) [10214-26]

NDT AND MATERIAL EVALUATION

Thermographic investigations of metal inclusions in 3D printed samples [10214-28]

Liquid nitrogen cooling in IR thermography applied to steel specimen [10214-29]

Quantitative evaluation of water content in composite honeycomb structures by using one-sided IR thermography: is there any promise? [10214-30]

Surface crack detection in different materials with inductive thermography [10214-32]

Coating defect evaluation based on stimulated thermography [10214-33]
<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10214 0Y</td>
<td>Application of the quadrupole method for simulation of passive thermography</td>
<td>[10214-35]</td>
</tr>
<tr>
<td>10214 0Z</td>
<td>Thermal diffusivity measurement of ring specimens by infrared thermography</td>
<td>[10214-37]</td>
</tr>
<tr>
<td>10214 10</td>
<td>IR thermography for the assessment of the thermal conductivity of aluminum alloys</td>
<td>[10214-38]</td>
</tr>
<tr>
<td>10214 11</td>
<td>Analysis of pulse thermography using similarities between wave and diffusion propagation</td>
<td>[10214-39]</td>
</tr>
<tr>
<td>10214 12</td>
<td>Infrared thermography applied to transport infrastructures monitoring: outcomes and perspectives (Best Paper Award)</td>
<td>[10214-40]</td>
</tr>
<tr>
<td>10214 13</td>
<td>Infrared thermography applied to the study of heated and solar pavement: from numerical modeling to small scale laboratory experiments</td>
<td>[10214-41]</td>
</tr>
<tr>
<td>10214 14</td>
<td>Direct comparison of two pyrometers and a low-cost thermographic camera for time resolved LWIR temperature measurements</td>
<td>[10214-42]</td>
</tr>
<tr>
<td>10214 15</td>
<td>Coaxial visible and FIR camera system with accurate geometric calibration</td>
<td>[10214-46]</td>
</tr>
<tr>
<td>10214 17</td>
<td>Radiometric calibration of an ultra-compact microbolometer thermal imaging module</td>
<td>[10214-44]</td>
</tr>
<tr>
<td>10214 18</td>
<td>Investigation of the influence of spatial degrees of freedom on thermal infrared measurement</td>
<td>[10214-45]</td>
</tr>
<tr>
<td>10214 1A</td>
<td>Thermography based prescreening software tool for veterinary clinics</td>
<td>[10214-49]</td>
</tr>
<tr>
<td>10214 1C</td>
<td>Thermal conductivity characterization of polyaniline doped material for thermoelectric applications</td>
<td>[10214-51]</td>
</tr>
<tr>
<td>10214 1E</td>
<td>Infrared image correction for the reduction of background reflection</td>
<td>[10214-53]</td>
</tr>
<tr>
<td>10214 1F</td>
<td>High-performance interfaces for the implementation of various cooled IR detectors</td>
<td>[10214-54]</td>
</tr>
<tr>
<td>10214 1H</td>
<td>Modified algorithm for mineral identification in LWIR hyperspectral imagery</td>
<td>[10214-57]</td>
</tr>
</tbody>
</table>

MODELING HEAT CONDUCTION AND THERMOPHYSICAL PROPERTIES

BUILDINGS AND INFRASTRUCTURES

DETECTORS, IMAGING SYSTEMS AND CALIBRATION

POSTER SESSION
Thermal NDT applying Candid Covariance-Free Incremental Principal Component Thermography (CCIPCT) [10214-58]

Fatigue limit estimation of titanium alloy Ti-6Al-4V with infrared thermography [10214-59]

The role of the continuous wavelet transform in mineral identification using hyperspectral imaging in the long-wave infrared by using SVM classifier [10214-60]

Satellite image fusion by using a combination of IHS and HPM methods [10214-61]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abdulkadhim, Z., 0P
Akai, Atsushi, 1J
Altenburg, Simon J., 14
Alvandipour, Mehrdad, 0B, 1A
Ancona, Francesco, 0Q
Arora, Vanita, 0G
Beaudoin, Georges, 1H, 1K
Bison, P., 0T, 0Z, 10, 1C
Blednov, Roman G., 0E
Bolduc, Sean, 0H
Bortolin, A., 0T, 0Z
Cadelano, G., 0T, 0Z
Calliari, I., 10
Castelo, A., 0L
Celamio, R., 0L
Chamberland, Martin, 1H, 1K
Chulkov, A. O., 0U
Crinière, A., 12
Dahal, Rohini, 0B, 1A
De Finis, Rosa, 0Q
Dersusova, D. A., 0N
Djupkpe Dizeu, Frank Billy, 18
Druzhinin, N. V., 0N
Dua, Geetika, 0Q
Dumoulin, J., 12, 13
Famengo, A., 1C
Farley, Vincent, 0O
Ferrandes, Henrique, 0I
Ferrarini, G., 0T, 0Z
Fetiere, A. M., 0P
Fleuret, Julien R., 0I, 18
Fox, Jason C., 07
Gagnon, Marc-André, 0O
Galiotti, Umberto, 0Q, 0X
Genest, Marc, 0I
Gershenson, M., 11
Gorostegui-Colinas, E., 0L
Gregory, Elizabeth D., 0Y
Guyot, Éric, 0C
Hamada, Kenichi, 0M
Harman, Rebecca, 0H
Herrera, María S., 0D
Hsieh, Sheng-Jen, 09, 0A
Huff, Roy, 02
Huot, François, 1H, 1K
Ibarra-Castanedo, Clemente, 1H, 1I, 1K
Jalalvand, Azaraksh, 05
Kato, Yukitaka, 0B
Kobayashi, C., 1E
Kordalos, E. Z., 0P
Krankenhagen, Rainer, 14
Krauß, Matthias, 1F
Lagueux, Philippe, 0O
Lama, Norsang, 0B, 1A
Lane, Brandon M., 07
Laurie, Seth, 17
Le Touz, N., 13
Lei, Lei, 0T, 18
Liaigre, Kévin, 1H, 1K
López de Uralde, P., 0L
Maldague, Xavier P. V., 0I, 0T, 18, 1H, 1I, 1K, 1L
Malik, Anav, 0A
Marcotte, Frédéric, 0O
 MARINO DOMINIC J., 0B, 1A
McIntosh, Gregory B., 02
Mendioroz, A., 0L
Merci, Bart, 05
Mishra, Deependra K., 0B, 1A
Monti Hughes, Andrea, 0D
Moriyama, Junko, 0B
Morton, Vince, 0O
Moskovchenko, A. I., 0U
Mulaveesala, Ravibabu, 0G
Muniyappa, Amarnath, 0G
Nakamura, Yu, 0M
Nazarov, S., 10
Nekhoroshev, V. O., 0N
Nonaka, Shinichi, 0M
Nugent, Paul W., 17
Ogasawara, N., 1E
Ogino, Yuka, 15
Okutomi, Masatoshi, 15
Oswald-Tranta, Beata, 05, 0W
Ouellet, Denis, 18
Padra, Claudio, 0D
Palumbo, Davide, 0Q, 0X
Pan, Y.-Y., 0U
Pastor, Elsa, 04
Perilli, Stefano, 0I
Planas, Eulàlia, 04
Riesland, David W., 17
Rios, Oriol, 04
Rossi, S., 0Z, 10, 1C
Sackman, Joseph, 0B, 1A
Sakagami, Takahide, 0M, 1J
Salazar, A., 0L
Salva, Natalia, 0D
Santa Cruz, Gustavo A., 0D
Sarasini, Fabrizio, 0I, 0N
Schmidt, Roland, 0S
Schwint, Amanda, 0D
Sfarra, Stefano, 0I, 0N, 18, 1I
Shaw, Joseph A., 17
Shetakov, Ivan L., 0E
Shibata, Takashi, 15
Shirozawa, Daiki, 0M, 1J
Siddiqui, Juned A., 0G
Sojasi, Saeed, 1H, 1K, 1L
Takasu, Hiroki, 0B
Tamborino, Rosanna, 0X
Tanaka, Masayuki, 15
Touliker, T., 13
Trofimov, Vladislav V., 0E
Trofimov, Vyacheslav A., 0E
Tuschi, Christoph, 0S
Umbaugh, David, 1A
Umbaugh, Scott E., 0B, 1A
Valero, Mario M., 04
Vandecasteele, Florian, 04, 05
Vavilov, V. P., 0N, 0U
Verstockt, Steven, 04, 05
Vettermann, Matthias, 1F
Vollheim, Birgit, 1F
Wach, Marian, 1F
Winfree, William P., 0Y
Yamada, H., 1E
Yeung, Ho, 07
Yousefi, Bardia, 1B, 1H, 1I, 1K
Zalameda, Joseph N., 0H, 0Y
Zamengo, Massimiliano, 0B
Zhang, Hai, 0I, 18
Zhou, Xunfei, 09, 0A
Conference Committees

Symposium Chair
Majid Rabbani, Rochester Institute of Technology (United States)

Symposium Co-chair
Robert Fiete, Harris Corporation (United States)

Conference Chair
Paolo Bison, Consiglio Nazionale delle Ricerche (Italy)

Conference Co-chair
Douglas Burleigh, La Jolla Cove Consulting (United States)

Conference Program Committee
Andrea Acosta, Colbert Infrared Services (United States)
Nicolas Avdelidis, National Technical University of Athens (Greece)
Jeff R. Brown, Embry-Riddle Aeronautical University (United States)
Fred P. Colbert, Colbert Infrared Services (United States)
Amanda K. Criner, Air Force Research Laboratory (United States)
Jaap de Vries, FM Global (United States)
Ralph B. Dinwiddie, Oak Ridge National Laboratory (United States)
Sheng-Jen (Tony) Hsieh, Texas A&M University (United States)
Herbert Kaplan, Honeyhill Technical Company (United States)
Timo T. Kauppinen, VTT Technical Research Center of Finland (Finland)
Dennis H. LeMieux, Siemens Power Generation, Inc. (United States)
Monica Lopez Saenz, IRCAM GmbH (Germany)
Gregory B. McIntosh, Teasdale Consultants Ltd. (Canada)
Xavier P. V. Maldague, University Laval (Canada)
Junko Morikawa, Tokyo Institute of Technology (Japan)
Gary L. Orlove, FLIR Systems, Inc. (United States)
Beata Oswald-Tranta, Montan Universität Leoben (Austria)
G. Raymond Peacock, Temperatures.com, Inc. (United States)
Ralph A. Rotolante, Vicon Enterprises Inc. (United States)
Andres E. Rozloznik, SI Termografia Infrarroja (Argentina)
Morteza Safai, The Boeing Company (United States)
Takahide Sakagami, Kobe University (Japan)
Steven M. Shepard, Thermal Wave Imaging, Inc. (United States)
Sami Siikanen, VTT Technical Research Center of Finland (Finland)
Conference Review Committee

Bjørn F. Andresen, RICOR Cryogenic & Vacuum Systems (Israel)
Gabor F. Fulop, Maxtech International, Inc. (United States)
Gerald C. Holst, JCD Publishing (United States)
Keith A. Krapels, U.S. Army Night Vision & Electronic Sensors Directorate (United States)
Arantza Mendioroz, Universidad del País Vasco (Spain)

Session Chairs

1 Vendor Presentations and Reception: Infrared Applications: ThermoSense XXXIX
 Andres E. Rozlosnik, SI Termografía Infrarroja (Argentina)
 Sheng-Jen Hsieh, Texas A&M University (United States)

2 Standards Certifications and Guidelines
 Paolo Bison, Consiglio Nazionale delle Ricerche (Italy)
 Gregory B. McIntosh, Teasdale Consultants Ltd. (Canada)

3 Fire Analysis and Detection
 Beata Oswald-Tranta, Montan Universität Leoben (Austria)
 Jaap de Vries, FM Global (United States)

4 Additive Manufacturing I
 Ralph B. Dinwiddie, Oak Ridge National Laboratory (United States)
 Paolo Bison, Consiglio Nazionale delle Ricerche (Italy)

5 Additive Manufacturing II
 Ralph B. Dinwiddie, Oak Ridge National Laboratory (United States)
 Paolo Bison, Consiglio Nazionale delle Ricerche (Italy)

6 Biological and Medical Applications
 Paolo Bison, Consiglio Nazionale delle Ricerche (Italy)

7 NDT and Signal Processing
 Xavier P. V. Maldague, University Laval (Canada)
 Joseph N. Zalameda, NASA Langley Research Center (United States)
8 Vibro-Thermography and Thermomechanics
Takahide Sakagami, Kobe University (Japan)
Arantza Mendioroz, Universidad del País Vasco (Spain)

9 NDT and Material Evaluation
Douglas Burleigh, La Jolla Cove Consulting (United States)
Paolo Bison, Consiglio Nazionale delle Ricerche (Italy)

10 Modeling Heat Conduction and Thermophysical Properties
Steven M. Shepard, Thermal Wave Imaging, Inc. (United States)
Paolo Bison, Consiglio Nazionale delle Ricerche (Italy)

11 Buildings and Infrastructures
Sheng-Jen Hsieh, Texas A&M University (United States)

12 Detectors, Imaging Systems and Calibration
Junko Morikawa, Tokyo Institute of Technology (Japan)
Gary L. Orlove, FLIR Systems, Inc. (United States)
Introduction

The Thermosense conference continues to play a significant role in assessing the state-of-the-art, current developments, and future trends in the applications of infrared thermography.

This year, for the first time, Thermosense was held in Anaheim, California (United States), on 9–13 April, 2017.

The international Thermosense community of academic scientists, industry professionals, and students submitted 62 abstracts and made 46 presentations. Countries represented this year included Argentina, Canada, India, Japan, Mexico, Russia, Tajikistan, and the United States, along with a contingent of researchers from European countries including Austria, Belgium, France, Germany, Italy, and the United Kingdom.

Two awards were presented for excellence in scientific achievement. The first award, for the best overall paper, involved the use of IR thermography in large scale applications: the study of buildings and infrastructures. The second was for the best student paper, which involved small/micro scale applications: the study of thermal/mechanical properties of materials.

The awards were sponsored by FLIR Systems Inc. and IRCameras LLC respectively. These two award-winning papers demonstrated the wide range of flexibility of infrared technology.

Other topics of growing interest represented at this year’s Thermosense were the use of thermography in additive manufacturing, in biological and medical applications, and in the ever-growing application of nondestructive testing (NDT).

Thermosense promotes developments in infrared technology by hosting the annual “Vendor” session, which is now in its 13th year. This very popular session is a unique opportunity for people to learn about new equipment, systems, and accessories.

Next year the historic 40th (XL) Thermosense conference will be held in Orlando, Florida (United States) where most of our conferences have been. Many of our dedicated group have been coming to Thermosense for 20–30 years, and a small number attended Thermosense 1.

We will plan some special events for Thermosense XL.

Paolo Bison
Douglas Burleigh