
Vladimir F. Lukichev
Konstantin V. Rudenko
Editors

3-7 October 2016
Zvenigorod, Russian Federation

Organized by
Institute of Physics and Technology (Russian Federation)

Sponsored by
SC "Molecular Electronics Research Institute" (Russian Federation)
Russian Foundation for Basic Researches (Russian Federation)
Russian Academy of Sciences (Russian Federation)
TechnoInfo Ltd. (United Kingdom/Russian Federation)
NIX Company (Russian Federation)

Published by
SPIE

Volume 10224
The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

ISSN: 0277-786X
ISSN: 1996-756X (electronic)
ISBN: 9781510609495
ISBN: 9781510609501 (electronic)

Published by

SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445
SPIE.org

Copyright © 2016, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/16/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIE. DIGITAL LIBRARY
SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:
- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.
Contents

MICRO- AND NANOELECTRONIC MATERIALS AND FILMS I

10224 02	HfO₂/Pr₂O₃ gate dielectric stacks [10224-45]
10224 03	Low resistance Ti/Si/Ti/Al/Ni/Au ohmic contact for AlGaN/GaN HEMT [10224-66]
10224 04	Tungsten alloyed with rhenium as an advanced material for heat-resistant silicon ICs interconnects [10224-10]
10224 05	Metal-assisted chemical etching of silicon with different metal films and clusters: a review [10224-54]
10224 06	Mechanical properties of bimetallic one-dimensional structures [10224-94]
10224 07	Optical coefficients of nanometer-thick copper and gold films in microwave frequency range [10224-26]
10224 08	Effective optical constants of silver nanofilms calculated in wide frequency range [10224-77]
10224 09	Analysis of contribution from various order diffraction maxima to complex magneto-optical Kerr effect from three-dimensional structures like magnetophotonic crystals [10224-16]
10224 OA	Modulation of magnetic interaction in Bismuth ferrite through strain and spin cycloid engineering [10224-68]
10224 OB	Quantum-mechanical relaxation model for characterization of fine particles magnetic dynamics in an external magnetic field [10224-106]

MICRO- AND NANOELECTRONIC MATERIALS AND FILMS II

<p>| 10224 0C | GeSi nanocrystals formed by high temperature annealing of GeO/SiO₂ multilayers: structure and optical properties [10224-17] |
| 10224 0D | Hydrogenated amorphous silicon based p-i-n structures with Si and Ge nanocrystals in layers [10224-22] |</p>
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investigation of the phase formation from nickel coated nanostructured silicon</td>
<td>10224-8</td>
</tr>
<tr>
<td>Chemical surface treatment of Ge$_2$Sb$_2$Te$_5$ thin films for phase change memory application</td>
<td>10224-103</td>
</tr>
<tr>
<td>Some important aspects in the glass structure of chalcogenide systems</td>
<td>10224-47</td>
</tr>
<tr>
<td>Study of morphological characteristic of por-Si formed using metal-assisted chemical etching by BET-method and fractal geometry</td>
<td>10224-101</td>
</tr>
<tr>
<td>Formation of nanoporous structure in silicon substrate using two-stage annealing process</td>
<td>10224-70</td>
</tr>
<tr>
<td>Application of porous alumina formed in selenic acid solution for nanostructures investigation via Raman spectroscopy</td>
<td>10224-102</td>
</tr>
<tr>
<td>Low-threshold field emission in planar cathodes with nanocarbon materials</td>
<td>10224-92</td>
</tr>
<tr>
<td>The features of CNT growth on catalyst-content amorphous alloy layer by CVD-method</td>
<td>10224-65</td>
</tr>
</tbody>
</table>

PHYSICS OF MICRO- AND NANODEVICES

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-dimensional transit-time diodes for terahertz generation</td>
<td>10224-110</td>
</tr>
<tr>
<td>Efficiency of the signal detection in RF and sub THz ranges by means of GaAs tunnel diodes</td>
<td>10224-73</td>
</tr>
<tr>
<td>Electrically stimulated high-frequency replicas of a resonant current in GaAs/AIAs resonant-tunneling double-barrier THz nanostructures</td>
<td>10224-55</td>
</tr>
<tr>
<td>Photoresponse in graphene field effect transistor under ultra-short pulsed laser irradiation</td>
<td>10224-24</td>
</tr>
<tr>
<td>Dielectric influence on IV curve of graphene field effect transistor</td>
<td>10224-18</td>
</tr>
<tr>
<td>Sn nanothreads in GaAs: experiment and simulation</td>
<td>10224-109</td>
</tr>
<tr>
<td>Thin film ruthenium microstructures for transition edge sensors</td>
<td>10224-19</td>
</tr>
<tr>
<td>Investigation of memristor effect on the titanium nanowires fabricated by focused ion beam</td>
<td>10224-78</td>
</tr>
<tr>
<td>Resistive switching of vertically aligned carbon nanotube by a compressive strain</td>
<td>10224-40</td>
</tr>
</tbody>
</table>
MODELING AND SIMULATION

<table>
<thead>
<tr>
<th>Proc. of SPIE Vol. 10224 1022401-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>10224 0V</td>
</tr>
<tr>
<td>10224 0W</td>
</tr>
<tr>
<td>10224 0X</td>
</tr>
<tr>
<td>10224 0Y</td>
</tr>
<tr>
<td>10224 0Z</td>
</tr>
<tr>
<td>10224 10</td>
</tr>
<tr>
<td>10224 11</td>
</tr>
<tr>
<td>10224 12</td>
</tr>
<tr>
<td>10224 13</td>
</tr>
<tr>
<td>10224 14</td>
</tr>
<tr>
<td>10224 15</td>
</tr>
<tr>
<td>10224 16</td>
</tr>
<tr>
<td>10224 17</td>
</tr>
<tr>
<td>10224 18</td>
</tr>
</tbody>
</table>

MICRO- AND NANOELECTROMECHANICAL SYSTEMS

<table>
<thead>
<tr>
<th>Proc. of SPIE Vol. 10224 1022401-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>10224 19</td>
</tr>
<tr>
<td>10224 1A</td>
</tr>
<tr>
<td>10224 1B</td>
</tr>
<tr>
<td>10224 1C</td>
</tr>
</tbody>
</table>
Anchored multi-DOF MEMS gyroscope having robust drive mode [10224-89]

Highly sensitive devices for primary signal processing of the micromechanical capacitive transducers [10224-31]

Integral planar supercapacitor with CNT-based composite electrodes for heat-sensitive MEMS and NEMS [10224-75]

Biosensor platform based on carbon nanotubes covalently modified with aptamers [10224-71]

Angular MET sensor for precise azimuth determination [10224-72]

The simulation model of planar electrochemical transducer [10224-76]

The planar silicon-based microelectronic technology for electrochemical transducers [10224-84]

The precision seismometer based on planar electrochemical transducer [10224-85]

3D simulation of silicon micro-ring resonator with Comsol [10224-44]

Electro-optical converter of zero-order and second-order Bessel laser beams for the photolithography systems [10224-9]

The formation of photoresist film with thicknesses from 0.7 microns to 100 microns on surfaces with considerable relief by spray coating on the heated substrate [10224-11]

Problems and prospects of maskless (B)EUV lithography [10224-91]

Resistless lithography - selective etching of silicon with gallium doping regions [10224-20]

Features of local anodic oxidation process [10224-6]

Deposition of polymers on structures with nano-gaps fabricated between carbon nanotubes by focused ion beam etching [10224-37]

Direct laser patterning of graphene-based biosensors [10224-93]

III-Nitride advanced technologies and equipment for microelectronics [10224-100]

Plasma parameters and active species kinetics in CF$_4$/O$_2$/Ar gas mixture: effects of CF$_4$/O$_2$ and O$_2$/Ar mixing ratios [10224-21]

Technology for fabrication of sub-20 nm silicon planar nanowires array [10224-87]
10224 1W	Comparative study of CF$_4$- and CHF$_3$-based plasmas for dry etching applications [10224-35]
10224 1X	Cellular-automata model of oxygen plasma impact on porous low-K dielectric [10224-32]
10224 1Y	Investigation of the reactive ion etching of Ge$_2$Sb$_2$Te$_5$ thin films [10224-97]
10224 1Z	A study of the vertical walls and the surface roughness GaAs after the operation in the combined plasma etching [10224-90]
10224 20	Low-damage plasma etching of porous low-k films in CF$_3$Br and CF$_4$ plasmas under low-temperature conditions [10224-88]
10224 21	Elements for hard X-ray optics produced by cryogenic plasma etching of silicon [10224-25]
10224 22	Temperature switching waves in a silicon wafer on lamp-based heating [10224-30]
10224 23	Critical parameters of silicon wafer lamp-based annealing in high power flux of incoherent radiation [10224-69]
10224 24	Evolution of structural properties of Si(001) subsurface layer containing He bubbles by low temperature annealing [10224-62]

METROLOGY AND DIAGNOSTICS

10224 25	Application of spectral ellipsometry to in situ diagnostics of atomic layer deposition of dielectrics on silicon and AlGaN [10224-34]
10224 26	Non-destructive determination of thickness of the dielectric layers using EDX [10224-12]
10224 27	TDR method for determine IC’s parameters [10224-67]
10224 28	Determination of mechanical stress in the silicon nitride films with a scanning electron microscope [10224-1]
10224 29	Method of stress and measurement modes for research of thin dielectric films of MIS structures [10224-107]
10224 2A	Numerical simulation of thin-film microthermocouple for the research of dissipation in tunneling contact [10224-36]
10224 2B	Classification automation of thermoplastic particles in a cured epoxy matrix according to their size on microscopic images [10224-81]
10224 2C	Fundamentals of the fast neutral beams diagnostics [10224-59]
10224 2D	Optical emission 2D-tomography of plasma: case of rectangular two-view scanning and diagonal symmetry of inhomogenetities [10224-49]
10224 2E	Experimental and theoretical investigations of quantum state transfer and decoherence processes in quasi-one-dimensional systems in multiple-quantum NMR experiments [10224-4]
10224 2F	Quantum entanglement and quantum discord in dimers in multiple quantum NMR experiments [10224-5]
10224 2G	Multifunctional quantum node based on double quantum dot in laser and cavity fields [10224-51]
10224 2H	Diamond chip under single-photon driving as a high spatial resolution quantum magnetometer and electrometer [10224-53]
10224 2I	Stark-shift based quantum dot-cavity electrometer [10224-96]
10224 2J	Single-photon transmission and spectroscopy of diamond microring isomers [10224-48]
10224 2K	Single-electron solitons in magnetic field [10224-111]
10224 2L	Continuous-time quantum walk of two interacting fermions on a cycle graph [10224-83]
10224 2M	Quantum-classical crossover in quantum walks mixing time [10224-112]
10224 2N	Broadband biphotons in the single spatial mode through high pump focusing and walk-off effect [10224-61]
10224 2O	Quantum states tomography with noisy measurement channels [10224-63]
10224 2P	Schmidt decomposition and multivariate statistical analysis [10224-60]
10224 2Q	Study of higher order correlation functions and photon statistics using multiphoton-subtracted states and quadrature measurements [10224-52]
10224 2R	Analysis of quantum tomography protocol efficiency for triphoton polarization states [10224-46]
10224 2S	Numerical characteristics of quantum computer simulation [10224-74]
10224 2T	Effective computation of quantum discord in a multiqubit spin chain [10224-86]
10224 2U	Effect of crosstalk on QBER in QKD in urban telecommunication fiber lines [10224-39]
10224 2V	Single photon detector design features [10224-50]
10224 2W	Fast polarization QKD scheme based on LiNbO₃ phase modulators [10224-28]
Computer simulation of quantum effects in Tavis-Cummings model and its applications [10224-108]

Dark states of atomic ensembles: properties and preparation [10224-7]

Selective measurement of quantronium qubit states by using of mesoscopic non-linear oscillator [10224-95]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abdullaev, D. A., 1P, 26
Abramov, Igor I., 0V
Ageev, Oleg A., 0T, 0U, 1Z
Alekseyev, A., 1F
Alexeev, A. N., 1T
Amirov, Ildar I., 1A
Andreev, Dmitrii V., 29
Andreev, Valery G., 06, 07, 0B
Andreev, Vladimir V., 29
Antonov, Alexander, 1H
Avilov, V. I., 0T
Avosopyants, G. V., 2Q, 2R
Baklanov, M., 20
Balbekov, A., 18
Bantysh, B. I., 2O
Belinsky, L. V., 2Q, 2R
Belov, A. N., 04, 1Q
Bereznik, Alexandra Yu., 0E
Binov, Yuriy F., 0U
Bobkov, S., 18
Bobrinsketskiy, Ivan I., 0P, 1G, 1R, 1S
Bochkin, G. A., 2E
Bogdanov, Yu. I., 2O, 2P, 2Q, 2R
Bogdanova, N. A., 2O, 2P, 2Q
Bondarev, F., 1B
Borshchevskaya, N. A., 2R
Borzdov, Andrei V., 0M, 0W
Borzdov, Vladimir M., 0M, 0W
Boyko, Anton N., 0H
Bugaev, A., 0R
Bulyarskii, S., 0L
Chaly, V. P., 1T
Chaplygin, Yu. A., 04, 0K, 1Q
Chekmachev, Vadim G., 2I
Cherkov, A. G., 0C
Chernyaev, A. P., 12
Chernyavskiy, A., 2S, 2T
Chesnokov, Yury M., 24
Chkhala, N. I., 1O
Chuev, M., 0B
Ciesielski, R., 0L
Clemente, Iosif E., 20, 25
Cohn, A. I., 0S
Davydov, F., 0M
Dedkova, A. A., 28
Degtyarev, S. A., 1L
Denisenko, M. V., 22
Denisenko, Yuri I., 0I
Djuzhev, N. A., 2B
Dolgov, A. N., 1J
Doronin, S. I., 2E
Drosdetsky, M. G., 15
Dubkov, S., 0L
Dudin, Alexander A., 05, 0E
Duplinskii, A., 2W
Dvurechendkii, A. V., 0D
Efremov, A., 1U, 1W
Egorchikov, A. E., 1J
Egorov, I. V., 1J
Blushov, I. V., 14
Emelianov, Aleksei V., 0K, 0P, 1R
Eskov, Andrey V., 12
Ezhova, O., 1B
Fadeev, A. V., 2D
Fajgar, R., 0D
Fastovets, D. V., 2P
Fedichkin, Leonid E., 0M, 2L, 2M
Fedorova, A. V., 2E
Feil'dman, E. B., 2E
Filippov, S., 2K
Fomchenkov, S. A., 1D
Gaev, Dahir S., 0H
Galinov, A. M., 14
Gavrilin, I., 1F
Gavrilov, Sergey A., 0S, 0E, 0H, 0J, 0L
Gerasev, S. A., 2F
Gergel, V. A., 0X
Glukhenkaya, V. B., 0F
Glushko, A., 1C
Golishnikov, A. A., 04
Golovin, A. V., 1G, 1S
Gorbunov, Maxim S., 16, 18
Gornev, E. B., 1I, 1J
Gornev, Evgeny S., 1X
Gorshkova, N. M., 0X
Gromov, D., 0J, 0L, 1F, 1Y
Gusev, E. E., 2B
Gutshin, Oleg P., 1X
Ilin, A. S., 0S
Inlin, Oleg I., 0U
Ilina, Marina V., 0U
Isaeva, A., 1E
Jityaev, I. L., 0T
Kalmykov, Rustam M., 0H
Kalnov, V., 19
Conference Committee

Conference Chairs

Evgeny P. Velikhov, Russian Scientific Center “Kurchatov Institute”
(Russian Federation)

Yuri V. Gulyaev, Kotelnikov Institute of Radio Engineering and Electronics
(Russian Federation)

Conference Co-Chair

Gennadiy Ya. Krasnikov, SC “Molecular Electronics Research Institute”
(Russian Federation)

International Advisory Committee

Alexander L. Aseev, Rzhanov Institute of Semiconductor Physics
(Russian Federation)

Dmitri V. Averin, Stony Brook University (United States)

Mikhail R. Baklanov, International Microelectronic Center (Belgium)

Francis Balestra, Grenoble Institute of Technology (France)

Vladimir A. Labunov, Belarusian State University of Informatics and
Radioelectronics (Belarus)

Konstantin K. Likharev, Stony Brook University (United States)

Alexey N. Nazarov, Institute of Semiconductor Physics (Ukraine)

Jun-ichi Nishizawa, Semiconductor Research Institute (Japan)

Konstantin S. Novoselov, University of Manchester (United Kingdom)

Taiichi Otsuji, Tohoku University (Japan)

Iwo W. Rangelow, University of Ilmenau (Germany)

Stefan E. Schulz, Fraunhofer Institute for Electronic Nanosystems
(Germany)

Thomas Skotnicki, ST Microelectronics (France)

Robert A. Suris, Ioffe Institute (Russian Federation)

Akira Toriumi, University of Tokyo (Japan)
Program Committee

Chair

Yuri V. Gulyaev, Kotel’nikov Institute of Radio Engineering and Electronics (Russian Federation)

Co-Chairs

Igor G. Neizvestnyi, Rzhanov Institute of Semiconductor Physics (Russian Federation)
Vladimir F. Lukichev, Institute of Physics and Technology (Russian Federation)

Members

Vladimir B. Betelin, Scientific Research Institute for System Analysis (Russian Federation)
Yuri I. Bogdanov, Institute of Physics and Technology (Russian Federation)
Yuri A. Chaplygin, National Research University of Electronic Technology (Russian Federation)
Mikhail A. Chuev, Institute of Physics and Technology (Russian Federation)
Leonid E. Fedichkin, Moscow Institute of Physics and Technology, State University (Russian Federation)
Fadey F. Komarov, Belarusian State University (Belarus)
Peter S. Kop’ev, Ioffe Institute (Russian Federation)
Peter P. Maltsev, Institute on Ultra High Frequency Semiconductor Electronics (Russian Federation)
Vladislav Ya. Panchenko, Institute on Laser and Informatics Technologies (Russian Federation)
Dmitry V. Roshchupkin, Institute of Microelectronics Technology and High Purity Materials (Russian Federation)
Konstantin V. Rudenko, Institute of Physics and Technology (Russian Federation)
Alexander S. Rudy, P.G. Demidov Yaroslavl State University (Russian Federation)
Nikolay N. Salaschenko, Institute for Physics of Microstructures (Russian Federation)
Alexander S. Sigov, Moscow Technological University (Russian Federation)
Pavel A. Todua, Moscow Institute of Physics and Technology, State University (Russian Federation)
Vladimir V. Vyurkov, Institute of Physics and Technology (Russian Federation)
Organizing Committee

Chair
Vladimir F. Lukichev, Institute of Physics and Technology
(Russian Federation)

Co-Chair
Konstantin V. Rudenko, Institute of Physics and Technology
(Russian Federation)

Members
Igor I. Abramov, Belarusian State University of Informatics and
Radioelectronics (Belarus)
Ildar I. Amirov, Institute of Physics and Technology, Yaroslavl Branch
(Russian Federation)
Yuri I. Bogdanov, Institute of Physics and Technology
(Russian Federation)
Anastas A. Buharaev, Kazan E.K. Zavoisky Physical-Technical Institute
(Russian Federation)
Mikhail A. Chuev, Institute of Physics and Technology
(Russian Federation)
Alexander A. Gorbazevitch, P.N. Lebedev Physical Institute
(Russian Federation)
Eugeny S. Gornev, SC "Molecular Electronics Research Institute"
(Russian Federation)
Mikhail A. Korolev, National Research University of Electronic
Technology (Russian Federation)
Oleg P. Pchelyakov, Rzhanov Institute of Semiconductor Physics
(Russian Federation)
Vladimir P. Popov, Rzhanov Institute of Semiconductor Physics
(Russian Federation)
Vladislav Yu. Rubaev, NIX Company (Russian Federation)

Local Organizing Committee

Vladimir F. Lukichev – Chair of the Local Organizing Committee
Konstantin V. Rudenko – Co-Chair of the Local Organizing Committee
Yuri I. Bogdanov – Chair of the Extended Session
"Quantum Informatics"
Vladimir P. Kudrya – Scientific Secretary
Sergey I. Skalkin – Financial Director
Alexander N. Astakhov – Administrator
Alexey M. Dianov – PR-support
Andrey Yu. Chernyavskiy – WEB design
Andrey V. Miakonkikh – Technical Support
Alexander E. Rogozhin – Technical Support
Igor A. Semenikhin – Visa support
Vladimir V. Vyurkov – Contacts to the invited speakers
Lidiya M. Besschastnova – Registration and accommodation
Irina Yu. Lukianova – Registration and accommodation
Inna V. Nikitushkina - Conference fee manager
Irina B. Novojilova – Conference fee manager

Session Chairs

Plenary Session I
Vladimir F. Lukichev, Institute of Physics and Technology
(Russian Federation)

Plenary Session II. Quantum Informatics I
Yuri I. Bogdanov, Institute of Physics and Technology
(Russian Federation)

Plenary Session III
Vladimir F. Lukichev, Institute of Physics and Technology
(Russian Federation)

1 Materials and Films I
Andrey V. Miakonkikh, Institute of Physics and Technology
(Russian Federation)

2 Physics of Nanotransistors
Vladimir V. Vyurkov, Institute of Physics and Technology
(Russian Federation)

3 Quantum Informatics II
Sergey P. Kulik, Lomonosov Moscow State University
(Russian Federation)

4 Advanced Lithography
Konstantin V. Rudenko, Institute of Physics and Technology
(Russian Federation)

5 Physics of Memory Cells
Oleg S. Trushin, Institute of Physics and Technology, Yaroslavl Branch
(Russian Federation)

6 Quantum Informatics III
Sergei A. Moiseev, Kazan Quantum Center, Kazan Scientific Research Technical University (Russian Federation)
7 Materials and Films II
Andrey V. Miakonkikh, Institute of Physics and Technology
(Russian Federation)

8 Superconducting Devices
Vladimir F. Lukichev, Institute of Physics and Technology
(Russian Federation)

9 Quantum Informatics IV
Eduard B. Fel'dman, Institute of Problems of Chemical Physics
(Russian Federation)

10 Superconducting and Spintronics Devices
Valery G. Andreev, Lomonosov Moscow State University
(Russian Federation)

11 Meeting of the International Association of the Academies of Sciences I
Vladimir F. Lukichev, Institute of Physics and Technology
(Russian Federation)

12 Quantum Informatics V
Farid M. Ablayev, Kazan Federal University (Russian Federation)

13 Plasma-Based Technologies
Konstantin V. Rudenko, Institute of Physics and Technology
(Russian Federation)

14 Semiconductor Devices of Photonics
Vladimir V. Vyurkov, Institute of Physics and Technology
(Russian Federation)

15 Quantum Informatics VI
Andrey Chernyavskiy, Institute of Physics and Technology
(Russian Federation)

16 Modeling and Simulation of Semiconductor Devices
Vladimir V. Vyurkov, Institute of Physics and Technology
(Russian Federation)

17 Metrology and Characterization
Andrey V. Miakonkikh, Institute of Physics and Technology
(Russian Federation)
18 Quantum Informatics VII
 Yuri I. Ozhigov, Lomonosov Moscow State University
 (Russian Federation)

19 MEMS and NEMS
 Ildar I. Amirov, Institute of Physics and Technology, Yaroslavl Branch
 (Russian Federation)

20 Meeting of the International Association of the Academies of
 Sciences II
 Vladimir F. Lukichev, Institute of Physics and Technology
 (Russian Federation)
Introduction

The volume contains selected papers presented at the International Conference "Micro- and Nanoelectronics – 2016" (ICMNE-2016) which has been held in Zvenigorod, Moscow Region, Russia during October 3-7, 2016. ICMNE is a biannual conference covering the main fields of micro- and nanoelectronic technologies and device physics. Since 1992 the Institute of Physics and Technology (Moscow, Russia) is the permanent organizer of ICMNE. From 2003 ICMNE is an SPIE-affiliated conference. ICMNE-2016 included the Extended Session "Quantum Informatics-2016". The ICMNE-2016 scope contained such scientific and technological fields as micro- and nanoelectronic materials and films, technologies and equipment, metrology, physics and technologies of micro- and nanodevices, simulation and modeling, MEMS and NEMS physics and technology, quantum informatics. ICMNE-2016 included three plenary sessions and 18 topical sessions covering the following areas of focus:

- Physics of Nanotransistors, Photonic Devices, and Memory Cells
- Materials and Films
- Advanced Lithography
- Superconducting and Spintronics Devices
- Plasma-Based Technologies
- Quantum Informatics
- Simulation and Modeling and Simulation of Semiconductor Devices
- MEMS and NEMS
- Metrology and Characterization

The scientific program was based on invited and contributed papers from the scientists employed at European and Siberian Regions of Russia, Azerbaijan, Belarus, Poland, Germany, France, Korea, Japan, and India. The invited lectures on the current achievements and challenges in the contemporary microelectronics were delivered by the scientists from Germany, Japan, and Russia. The contributions to the sessions of the Conference were made by academic institutions, universities as well as from the industry. More than 100 contributions were discussed at oral presentations; about 120 others were presented as posters.

We hope that helpful discussions of these works at the sessions of the Conference and during personal contacts between attendees will promote the research activity in microelectronic community. Additional information about ICMNE-2016 can be found at the conference website http://www.icmne.ftian.ru

Vladimir F. Lukichev