18 April 2017 Bioluminescent indicator applicable to membrane voltage recording in various excitable cell types
Author Affiliations +
Proceedings Volume 10251, Biomedical Imaging and Sensing Conference; 1025102 (2017) https://doi.org/10.1117/12.2267502
Event: SPIE Technologies and Applications of Structured Light, 2017, Yokohama, Japan
Abstract
Here, we report a world-first bioluminescent indicator for membrane voltage, LOTUS-V. Since it is able to reveal voltage dynamics without external light source, LOTUS-V serves high contrast voltage imaging free from the effect of autofluorescence, suggesting its great versatility in the wide range of bioscience.
Inagaki and Nagai: Bioluminescent indicator applicable to membrane voltage recording in various excitable cell types

I

Introduction

Genetically encoded voltage indicators (GEVIs) are promising tools for directly imaging voltage dynamics and/or spiking activity of genetically defined cell types13. However, the strong excitation light, which is usually required for voltage imaging causes severe autofluorescence especially in the tissue sample. Furthermore, it often poses problems such as photobleaching and phototoxicity, the latter being particularly limiting in fragile cells4,5.

The best way to avoid these problems is to perform voltage imaging that doesn’t require excitation light, such as by using bioluminescent proteins. We previously developed the Nanolantern series6, bioluminescent proteins consisting of a Renilla luciferase (RLuc) variant and the yellow fluorescent protein (Venus)7, in which the bioluminescence intensity is enhanced by Förster resonance energy transfer (FRET). Then, we applied the Nano-lantern to develop several indicators for biological elements including Ca2+ and ATP, thereby succeeded Ca2+imaging with the optical stimulation of Channelrhodopsin-2, and ATP imaging during photosynthesis in a plant leaf. In line with this trend, we expanded the application of bioluminescent indicators to voltage imaging.

II

Material and Methods

Development of a bioluminescent voltage indicator

The design of the bioluminescent GEVI (bGEVI) was inspired with the FRET-based GEVIs such as VSFP BF1.2 and Mermaid28,9. To develop a bright bGEVI, we used NanoLuc which produces approximately 150-times the luminescence of RLuc10 and Venus as a FRET donor and acceptor, respectively. Similar to VSFP BF1.2 and Mermaid2, the working principle of our bGEVI is that a change in FRET is induced by the voltage-dependent movement of the voltage sensitive domain (VSD(R217Q)) of Ci-VSP11 on the plasma membrane (Fig. a). Finally, we designated this bGEVI as LOTUS-V (Luminescent Optical Tool for Universal Sensing of Voltage).

Figure.

(a) Schematic diagram illustrating the voltage sensing mechanism of LOTUS-V. Depolarization of the membrane voltage induces a structural change in the VSD (green), thereby increasing the FRET efficiency between NanoLuc (blue) and Venus (yellow), (b) Bioluminescence image of LOTUS-V expressing in GH3 cells, (c) Time series of the ratio value of LOTUS-V (red), VSFP BF1.2 (green) and Mermaid2 (purple) in GH3 cells. KCl solution was applied at 10 min. (d) Representative optical responses of Venus (yellow), NanoLuc (cyan), and its ratio change (ΔR/R0; black) in response to hiPSC- CMs contractions.

00140_psisdg10251_1025102_page_1_1.jpg

III

Results and Discussion

1.

Comparison with other fluorescent GEVIs

When we added the bioluminescent substrate, furimazine to the imaging medium, intense bioluminescence from rat pituitary epithelial-like tumor (GH3) cells was observed. (Fig. b). Comparing with VSFP BF1.2 or Mermaid2, the signal change in LOTUS-V upon KCl-induced depolarization was more than four times that seen with them (Fig. c).

2.

Voltage imaging in hiPSC-CMs

To examine the compatibility with excitable cell types that move we chose an in-vitro cardiomyocyte model. Then, we expressed LOTUS-V in cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) via lentivirus gene expression system. During spontaneous contraction, a reciprocal change in the NanoLuc and Venus intensities was observed. The increase in the emission ratio value suggested a precise reflection of the action potential in cardiomyocytes (Fig. d).

IV

Conclusion

Biouminescence imaging has been generally considered too dim for voltage imaging that requires a fast frame rate acquisition. To overcome this problem, we developed a bright bGEVI using NanoLuc, which is the brightest bioluminescent protein, and demonstrated that it was applicable for voltage imaging. As for in-vitro cardiomyocytes model, LOTUS-V mitigated the effect of motion artifact owing to ratiometric measurement and successfully captured the cardiac action potential. Collectively, bioluminescence imaging has several advantages over fluorescence imaging. LOTUS-V makes voltage imaging applicable to situations that are difficult to monitor with fluorescent GEVIs.

V

V

References

[1] 

Siegel, M. S.., Isacoff, E. Y., “Probe of Membrane Voltage,” 735–741 (1997).Google Scholar

[2] 

Dimitrov, D., He, Y., Mutoh, H., Baker, B. J., Cohen, L., Akemann, W.., Knöpfel, T., “Engineering and Characterization of an Enhanced Fluorescent Protein Voltage Sensor,” PLoS One 2(5), e440 (2007).Google Scholar

[3] 

Kralj, J., Douglass, A., Hochbaum, D., Maclaurin, D.., Cohen, A., “Optical recording of action potentials in mammalian neurons using a microbial rhodopsin,” Nat Meth 9(1), 90–95, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. (2012).Google Scholar

[4] 

Leyton-Mange, J. S., Mills, R. W., Macri, V. S., Jang, M. Y., Butte, F. N., Ellinor, P. T.., Milan, D. J., “Rapid cellular phenotyping of human pluripotent stem cell-derived cardiomyocytes using a genetically encoded fluorescent voltage sensor,” Stem Cell Reports 2(2), 163–170, The Authors (2014).Google Scholar

[5] 

Shinnawi, R., Huber, I., Maizels, L., Shaheen, N., Gepstein, A., Arbel, G., Tijsen, A. J.., Gepstein, L., “Monitoring Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes with Genetically Encoded Calcium and Voltage Fluorescent Reporters,” Stem Cell Reports 5(4), 582–596, The Authors (2015).Google Scholar

[6] 

Saito, K., Chang, Y.-F., Horikawa, K., Hatsugai, N., Higuchi, Y., Hashida, M., Yoshida, Y., Matsuda, T., Arai, Y., et al., “Luminescent proteins for high-speed single-cell and whole-body imaging.,” Nat. Commun. 3(May), 1262, Nature Publishing Group (2012).Google Scholar

[7] 

Nagai, T., Ibata, K., Park, E. S., Kubota, M., Mikoshiba, K.., Miyawaki, A., “A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications.,” Nat. Biotechnol. 20(1), 87–90 (2002).Google Scholar

[8] 

Akemann, W., Mutoh, H., Perron, A., Park, Y. K., Iwamoto, Y.., Knöpfel, T., “Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein.,” J. Neurophysiol. 108(8), 2323–2337 (2012).Google Scholar

[9] 

Tsutsui, H., Jinno, Y., Tomita, A., Niino, Y., Yamada, Y., Mikoshiba, K., Miyawaki, A.., Okamura, Y., “Improved detection of electrical activity with a voltage probe based on a voltage-sensing phosphatase.,” J. Physiol. 591(Pt 18), 4427–4437 (2013).Google Scholar

[10] 

Hall, M. P., Unch, J., Binkowski, B. F., Valley, M. P., Butler, B. L., Wood, G., Otto, P., Zimmerman, K., Vidugiris, G., et al., “Engineered Luciferase Reporter from a Deep Sea Shrimp Utilizing a Novel Imidazopyrazinone Substrate.”Google Scholar

[11] 

Murata, Y., Iwasaki, H., Sasaki, M., Inaba, K.., Okamura, Y., “Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor.,” Nature 435(7046), 1239–1243 (2005).Google Scholar

© (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Shigenori Inagaki, Takeharu Nagai, "Bioluminescent indicator applicable to membrane voltage recording in various excitable cell types", Proc. SPIE 10251, Biomedical Imaging and Sensing Conference, 1025102 (18 April 2017); doi: 10.1117/12.2267502; https://doi.org/10.1117/12.2267502
PROCEEDINGS
2 PAGES


SHARE
Back to Top