You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
28 July 1997Optical substrate materials for synchrotron radiation beam lines
We consider the materials choices available for making optical substrates for synchrotron radiation beam lines. We find that currently the optical surfaces can only be polished to the required finish in fused silica and other glasses, silicon, CVD silicon carbide, electroless nickel and 17-4 PH stainless steel. Substrates must therefore be made of one of these materials or of a metal that can be coated with electroless nickel. In the context of material choices for mirrors we explore the issues of dimensional stability, polishing, bending, cooling, and manufacturing strategy. We conclude that metals are best from an engineering and cost standpoint while the ceramics are best from a polishing standpoint. We then give discussions of specific materials as follows: silicon carbide, silicon, electroless nickel, Glidcop, aluminum, precipitation-hardening stainless steel, mild steel, invar and superinvar. Finally we summarize conclusions and propose ideas for further research.
The alert did not successfully save. Please try again later.
Malcolm R. Howells, Roger A. Paquin, "Optical substrate materials for synchrotron radiation beam lines," Proc. SPIE 10289, Advanced Materials for Optics and Precision Structures: A Critical Review, 102890M (28 July 1997); https://doi.org/10.1117/12.279813