17 March 2017 Kernel credal classification rule
Author Affiliations +
Proceedings Volume 10341, Ninth International Conference on Machine Vision (ICMV 2016); 103412I (2017) https://doi.org/10.1117/12.2268730
Event: Ninth International Conference on Machine Vision, 2016, Nice, France
In this paper, we propose a kernel version of the credal classification rule (CCR) to perform the classification in a feature space of high dimension. Kernels based approaches have become popular for several years to solve supervised or unsupervised learning problems. In this paper, our method is extended to the CCR. It is realized by replacing the inner product with an appropriate positive definite function, and the corresponding algorithms are called kernel Credal Classification Rule (KCCR). The approach is applied to the classification of the generated and real data to evaluate and compare the performance of the KCCR method with other classification methods.
© (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Khawla El Bendadi, Yissam Lakhdar, El Hassan Sbai, "Kernel credal classification rule", Proc. SPIE 10341, Ninth International Conference on Machine Vision (ICMV 2016), 103412I (17 March 2017); doi: 10.1117/12.2268730; https://doi.org/10.1117/12.2268730

Back to Top