29 August 2017 Development of a high throughput single-particle screening for inorganic semiconductor nanorods as neural voltage sensor
Author Affiliations +
Abstract
Monitoring membrane potential in neurons requires sensors with minimal invasiveness, high spatial and temporal (sub-ms) resolution, and large sensitivity for enabling detection of sub-threshold activities. While organic dyes and fluorescent proteins have been developed to possess voltage-sensing properties, photobleaching, cytotoxicity, low sensitivity, and low spatial resolution have obstructed further studies. Semiconductor nanoparticles (NPs), as prospective voltage sensors, have shown excellent sensitivity based on Quantum confined Stark effect (QCSE) at room temperature and at single particle level. Both theory and experiment have shown their voltage sensitivity can be increased significantly via material, bandgap, and structural engineering. Based on theoretical calculations, we synthesized one of the optimal candidates for voltage sensors: 12 nm type-II ZnSe/CdS nanorods (NRs), with an asymmetrically located seed. The voltage sensitivity and spectral shift were characterized in vitro using spectrally-resolved microscopy using electrodes grown by thin film deposition, which “sandwich” the NRs. We characterized multiple batches of such NRs and iteratively modified the synthesis to achieve higher voltage sensitivity (ΔF/F> 10%), larger spectral shift (>5 nm), better homogeneity, and better colloidal stability. Using a high throughput screening method, we were able to compare the voltage sensitivity of our NRs with commercial spherical quantum dots (QDs) with single particle statistics. Our method of high throughput screening with spectrally-resolved microscope also provides a versatile tool for studying single particles spectroscopy under field modulation.
© (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Yung Kuo, Yung Kuo, Kyoungwon Park, Kyoungwon Park, Jack Li, Jack Li, Antonino Ingargiola, Antonino Ingargiola, Joonhyuck Park, Joonhyuck Park, Volodymyr Shvadchak, Volodymyr Shvadchak, Shimon Weiss, Shimon Weiss, } "Development of a high throughput single-particle screening for inorganic semiconductor nanorods as neural voltage sensor", Proc. SPIE 10352, Biosensing and Nanomedicine X, 103520L (29 August 2017); doi: 10.1117/12.2273089; https://doi.org/10.1117/12.2273089
PROCEEDINGS
8 PAGES


SHARE
Back to Top