Presentation
3 October 2017 Theory of spin loss at metallic interfaces (Conference Presentation)
Kirill D. Belashchenko, Giovanni G. Baez Flores, Alexey A. Kovalev, Mark van Schilfgaarde
Author Affiliations +
Abstract
Interfacial spin-flip scattering plays an important role in magnetoelectronic devices. Spin loss at metallic interfaces has usually been quantified by matching the magnetoresistance data for multilayers to the Valet-Fert model, while treating each interface as a fictitious bulk layer whose thickness is $\delta$ times the spin-diffusion length. However, the relation between the parameter $\delta$ and the scattering properties of the interface has been missing. We establish this relation using the properly generalized magnetoelectronic circuit theory, for both normal and ferromagnetic interfaces. It is found that the parameter $\delta$ extracted from the measurements on multilayers scales with the square root of the probability of spin-flip scattering. The spin-flip scattering probabilities are calculated for several specific interfaces using the Landauer-Büttiker method based on the first-principles electronic structure, and the results are compared with experimental data.
Conference Presentation
© (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Kirill D. Belashchenko, Giovanni G. Baez Flores, Alexey A. Kovalev, and Mark van Schilfgaarde "Theory of spin loss at metallic interfaces (Conference Presentation)", Proc. SPIE 10357, Spintronics X, 1035712 (3 October 2017); https://doi.org/10.1117/12.2276035
Advertisement
Advertisement
KEYWORDS
Scattering

Data modeling

Probability theory

Spintronics

Back to Top