You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
6 September 2017Development of concave-convex imaging mirror system for a compact and achromatic full-field x-ray microscope
A full-field X-ray microscope utilizing advanced Kirkpatrick–Baez optics, which comprises four concave mirrors, provides high-resolution X-ray images without chromatic aberration. However, a large distance is required between the mirrors and the detector to obtain sufficiently high magnification factor. To achieve reduce this distance, this paper proposes a novel X-ray imaging mirror system consisting of two pairs of concave and convex mirrors, which enables the effective focal length to be decreased by shifting the principal surface. For developing the proposed optics, the mirrors were fabricated with an ion beam figuring system and stitching interferometer, developed by our group, with a peak-to-valley accuracy of ~2 nm. Analysis results indicate that the fabricated mirrors can achieve nearly diffraction-limited imaging performance. We report the mirror fabrication results and the characteristics of the fabricated mirrors.
The alert did not successfully save. Please try again later.
Jumpei Yamada, Satoshi Matsuyama, Shuhei Yasuda, Yasuhisa Sano, Yoshiki Kohmura, Makina Yabashi, Tetsuya Ishikawa, Kazuto Yamauchi, "Development of concave-convex imaging mirror system for a compact and achromatic full-field x-ray microscope," Proc. SPIE 10386, Advances in X-Ray/EUV Optics and Components XII, 103860C (6 September 2017); https://doi.org/10.1117/12.2272904