You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
26 October 2017New results for temperature rise in gain medium of operating DPAL causing its degradation
Diode Pumped Alkali Laser (DPAL) is one of the main candidates for development of a high power directed energy system producing laser beam from a single aperture with high spatial quality. Currently, several groups in the US and abroad demonstrated DPAL systems with kW level output power and efficiency higher than 50%. At the same time, the DPAL power scaling experiments revealed some limiting effects, which require detailed study to understand the nature of these effects and ways to mitigate them. Examples of such effects are output power degradation in time, alkali cell windows and gain medium contamination and damage that causes lasing efficiency decrease or even lasing termination. These problems can be connected to thermal effects, ionization, chemical interactions between the gain medium components and alkali cells materials. Study of all these and, possibly, other limiting effects and ways to mitigate them is very important for high power DPAL development. In this paper we present our new results of experiments on measurements of the temperature rise in the gain medium of operating DPAL leading to the output power degradation even before visible damage in the gain cell occurs. This degradation can be both recoverable and non-recoverable, depending on operation conditions and the system design.
The alert did not successfully save. Please try again later.
B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, R. J. Knize, "New results for temperature rise in gain medium of operating DPAL causing its degradation," Proc. SPIE 10436, High-Power Lasers: Technology and Systems, Platforms, and Effects, 104360B (26 October 2017); https://doi.org/10.1117/12.2278775