6 October 2017 Aspects of scintillation modelling in LEO-ground free-space optical communications
Author Affiliations +
Free-space optical communications can be used to transmit data from low Earth orbit satellites to ground with very high data rate. In the last section of the downlink, the electro-magnetic wave propagates through the turbulent atmosphere which is characterized by random index of refraction fluctuations. The propagating wave experiences phase distortions that lead to intensity scintillation in the aperture plane of the receiving telescope. For quantification, an appropriate scintillation model is needed. Approaches to analytically model the scintillation exist. Parameterization of the underlying turbulence profile (Cn2 profile) is however difficult. The Cn2 profiles are often site-specific and thus inappropriate or generic and thus too complex for a feasible deployment. An approach that directly models the scintillation effect based on measurements without claiming to be generic is therefore more feasible. Since measurements are sparse, a combination with existing theoretical framework is feasible to develop a new scintillation model that focuses on low earth orbit to ground free-space optical communications link design with direct detection. The paper addresses several questions one has to answer while analyzing the measurements data and selection of the theoretical models for the LEO downlink scenario. The first is the question of a suitable yet ease to use simple Cn2 profile. The HAP model is analyzed for its feasibility in this scenario since it includes a more realistic boundary layer profile decay than the HV model. It is found that the HAP model needs to be modified for a feasible deployment in the LEO downlink scenario for night time. The validity of the plane wave assumption in the downlink is discussed by model calculations of the scintillation index for a plane and Gaussian beam wave. Inaccuracies when using the plane earth model instead of the spherical earth model are investigated by analyzing the Rytov index. Impact of beam wander and non-ideal tracking are also discussed. Eventually, satellite measurements are discussed together with model calculations. It is found that the model calculation with the modified HAP turbulence profile fits the measurements. The plane wave assumption is valid for calculation of scintillation. The flat earth model is accurate enough to model scintillation over elevation when using the extended Rytov theory. The effect of beam wander is negligible. Further work needs to be carried out to elaborate a new scintillation model from the measurements and theory.
Conference Presentation
© (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Florian Moll, "Aspects of scintillation modelling in LEO-ground free-space optical communications", Proc. SPIE 10437, Advanced Free-Space Optical Communication Techniques and Applications III, 104370D (6 October 2017); doi: 10.1117/12.2282152; https://doi.org/10.1117/12.2282152

Back to Top