You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
5 October 2017Optimizing a neural network for detection of moving vehicles in video
In the field of security and defense, it is extremely important to reliably detect moving objects, such as cars, ships, drones and missiles. Detection and analysis of moving objects in cameras near borders could be helpful to reduce illicit trading, drug trafficking, irregular border crossing, trafficking in human beings and smuggling. Many recent benchmarks have shown that convolutional neural networks are performing well in the detection of objects in images. Most deep-learning research effort focuses on classification or detection on single images. However, the detection of dynamic changes (e.g., moving objects, actions and events) in streaming video is extremely relevant for surveillance and forensic applications. In this paper, we combine an end-to-end feedforward neural network for static detection with a recurrent Long Short-Term Memory (LSTM) network for multi-frame analysis. We present a practical guide with special attention to the selection of the optimizer and batch size. The end-to-end network is able to localize and recognize the vehicles in video from traffic cameras. We show an efficient way to collect relevant in-domain data for training with minimal manual labor. Our results show that the combination with LSTM improves performance for the detection of moving vehicles.
The alert did not successfully save. Please try again later.
Noëlle M. Fischer, Maarten C. Kruithof, Henri Bouma, "Optimizing a neural network for detection of moving vehicles in video," Proc. SPIE 10441, Counterterrorism, Crime Fighting, Forensics, and Surveillance Technologies, 104410I (5 October 2017); https://doi.org/10.1117/12.2277974