Paper
7 August 2017 Acceleration of protons to high energies by an ultra-intense femtosecond laser pulse
Jarosław Domański, Jan Badziak, Sławomir Jabłoński
Author Affiliations +
Proceedings Volume 10445, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2017; 1044543 (2017) https://doi.org/10.1117/12.2280808
Event: Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2017, 2017, Wilga, Poland
Abstract
The paper reports the results of two-dimensional particle-in-cell simulations of proton beam acceleration at the interactions of a 130-fs laser pulse of intensity from the range of 1021 – 1023 W/cm2, predicted for the Extreme Light Infrastructure (ELI) lasers currently built in Europe, with a thin hydrocarbon (CH) target. A special attention is paid to the effect of the laser pulse intensity and polarization (linear - LP, circular - CP) as well as the target thickness on the proton energy spectrum, the proton beam spatial distribution and the proton pulse shape and intensity. It is shown that for the highest, ultra-relativistic intensities (~ 1023 W/cm2) the effect of laser polarization on the proton beam parameters is relatively weak and for both polarizations quasi-monoenergetic proton beams of the mean proton energy ~ 2 GeV and δE/E ≈ 0.3 for LP and δE/E ≈ 0.2 for CP are generated from the 0.1-μm CH target. At short distances from the irradiated target (< 50 um), the proton pulse is very short (< 20 fs), and the proton beam intensities reach extremely high values > 1021 W/cm2, which are much higher than those attainable in conventional accelerators. Such proton beams can open the door for new areas of research in high energy-density physics and nuclear physics as well as can also prove useful for applications in materials research e.g. as a tool for high-resolution proton radiography.
© (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jarosław Domański, Jan Badziak, and Sławomir Jabłoński "Acceleration of protons to high energies by an ultra-intense femtosecond laser pulse ", Proc. SPIE 10445, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2017, 1044543 (7 August 2017); https://doi.org/10.1117/12.2280808
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Femtosecond phenomena

Ions

Optical simulations

Plasma

Back to Top