Translator Disclaimer
7 February 2018 Live dynamic analysis of mouse embryonic cardiogenesis with functional optical coherence tomography
Author Affiliations +
Hemodynamic load, contractile forces, and tissue elasticity are regulators of cardiac development and contribute to the mechanical homeostasis of the developing vertebrate heart. Congenital heart disease (CHD) is a prevalent condition in the United States that affects 8 in 1000 live births[1], and has been linked to disrupted cardiac biomechanics[2-4]. Therefore, it is important to understand how these forces integrate and regulate vertebrate cardiac development to inform clinical strategies to treat CHD early on by reintroducing proper mechanical load or modulating downstream factors that rely on mechanical signalling. Toward investigation of biomechanical regulation of mammalian cardiovascular dynamics and development, our methodology combines live mouse embryo culture protocols, state-of-the-art structural and functional Optical Coherence Tomography (OCT), second harmonic generation (SHG) microscopy, and computational analysis. Using these approaches, we assess functional aspects of the developing heart and characterize how they coincide with a determinant of tissue stiffness and main constituent of the extracellular matrix (ECM)—type I collagen. This work is bringing us closer to understanding how cardiac biomechanics change temporally and spatially during normal development, and how it regulates ECM to maintain mechanical homeostasis for proper function.
Conference Presentation
© (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Andrew L. Lopez III, Shang Wang, and Irina V. Larina "Live dynamic analysis of mouse embryonic cardiogenesis with functional optical coherence tomography ", Proc. SPIE 10472, Diagnosis and Treatment of Diseases in the Breast and Reproductive System IV, 104720S (7 February 2018); doi: 10.1117/12.2292104;

Back to Top