You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
8 February 2018Unraveling bacterial networks and their antimicrobial susceptibility on silicon microarchitectures using intrinsic phase-shift spectroscopy
We have developed a rapid phenotypic antimicrobial susceptibility testing (AST) in which photonic 2D silicon microarrays are employed as both the optical transducer element and as a preferable solid−liquid interface for bacterial colonization. We harness the intrinsic ability of the micro-architectures to relay optical phase-shift reflectometric interference spectroscopic measurements (termed PRISM) and incorporate it into a platform for culture-free, label-free tracking of bacterial accumulation, proliferation, and death. This assay employs microfluidic channels interfaced with PRISM chips and is carried out in a two-stage process, namely bacteria seeding and antibiotic incubation. Bacteria proliferation within the microtopologies results in an increase in refractive index of the medium, yielding an increase in optical path difference, while cell death or bacteriostatic activity results in decreasing or unchanged values. The optical responses of bacteria to various concentrations of relevant antibiotics have been tracked in real time, allowing for accurate determination of the minimum inhibitory concentration (MIC) values within 2-3 hours. We further extended this work to analyze antibiotic susceptibilities of clinical isolates and direct urine samples derived from patients at neighboring hospitals in newly designed, disposable microfluidic devices. This has opened the door to the observation of unique bacterial behaviors, as we can evaluate bacterial adhesion, growth, and antibiotic resistance on different microarchitectures, different surface chemistries, and even different strains. Motility, charge, and biofilm abilities have been explored for their effect of bacterial adhesion to the microstructures as we further develop our method of rapid, label-free AST for full clinical application.
The alert did not successfully save. Please try again later.
Heidi Leonard, Liran Holtzman, Yuri Haimov, Daniel Weizman, Yechezkel Kashi, Ofer Nativ, Sarel Halachmi, Ester Segal, "Unraveling bacterial networks and their antimicrobial susceptibility on silicon microarchitectures using intrinsic phase-shift spectroscopy," Proc. SPIE 10479, Light-Based Diagnosis and Treatment of Infectious Diseases, 1047907 (8 February 2018); https://doi.org/10.1117/12.2287655