Presentation
14 March 2018 Characterization and optimization of a stereolithography-based hydrogel for improved properties (Conference Presentation)
A. Camila Uzcategui, Archish Muralidharan, Virginia L. Ferguson, Stephanie J. Bryant, Robert R. McLeod
Author Affiliations +
Abstract
3D printing hydrogels via stereolithography is a promising system for the creation of regenerative medical implants. However, the mechanical and chemical properties of materials patterned using stereolithography-based printing techniques are largely unknown. In an effort to understand how optical propagation, polymerization, and transport dynamics result in material mechanical property distribution, this study focuses on the axial (depth) characterization of single-layer printed materials as a function of light intensity, exposure time and absorption depth. We use a poly(ethylene glycol) diacrylate based photopolymerization chain-growth reaction with an approximate bulk modulus of 39 MPa to explore this phenomenon. Fourier transform infrared spectroscopy (FTIR) is employed to quantify the degree of monomer conversion over time and intensity, while comparing it with a Beer-Lambert model that describes the effect of Tinuvin CarboProtect, the neutral absorber in our material on conversion as a function of depth. To evaluate the mechanical properties of the printed materials, compression testing is performed on each sample to extract the bulk modulus and to map conversion as a function of exposure time by fitting the force-displacement curves of each condition to the Hertz model for a quantitative comparison of material stiffness. This study aims to understand material and mechanical property distribution in a single layer, and use this understanding to create a predictive model of these properties, as well as decrease the scale of the distribution with the implementation of a novel post-cure technique. This work enables predictive models of microscopic polymer properties that can be translated into improved macroscopic structural properties to form a robust polymer network for tissue engineering microstructures.
Conference Presentation
© (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
A. Camila Uzcategui, Archish Muralidharan, Virginia L. Ferguson, Stephanie J. Bryant, and Robert R. McLeod "Characterization and optimization of a stereolithography-based hydrogel for improved properties (Conference Presentation)", Proc. SPIE 10491, Microfluidics, BioMEMS, and Medical Microsystems XVI, 104910B (14 March 2018); https://doi.org/10.1117/12.2290869
Advertisement
Advertisement
KEYWORDS
Stereolithography

FT-IR spectroscopy

Polymers

Statistical modeling

Tissue engineering

3D printing

Additive manufacturing

Back to Top