Front Matter: Volume 10498
Multiphoton Microscopy in the Biomedical Sciences XVIII

Ammasi Periasamy
Peter T. C. So
Karsten König
Xiaoliang S. Xie
Editors

28–30 January 2018
San Francisco, California, United States

Sponsored by
SPIE

Cosponsored by
Becker & Hickl GmbH (Germany) • Carl Zeiss (United States) • Chroma Technology Corp. (United States) • Coherent Inc. (United States) • Semrock Inc. (United States) • ISS, Inc. (United States) • JenLab GmbH (Germany) • Leica Microsystems (United States) • MKS Instruments (United States) • Applied Scientific Instrumentation (United States) • PicoQuant Photonics (United States)

Published by
SPIE

Volume 10498
Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>vii</td>
<td>Authors</td>
</tr>
<tr>
<td>ix</td>
<td>Conference Committee</td>
</tr>
<tr>
<td>xiii</td>
<td>Introduction</td>
</tr>
</tbody>
</table>

KEYNOTE SESSION

| 10498 04 | **Metabolic imaging of tumor for diagnosis and response for therapy** (Keynote Paper) [10498-3] |

METABOLISM/NADH/FAD/TRYPTOPHAN I

| 10498 06 | **Ultra-fast HPM detectors improve NAD(P)H FLIM** (invited Paper) [10498-5] |
| 10498 07 | **Multiparametric analysis of cisplatin-induced changes in cancer cells using FLIM** (invited Paper) [10498-6] |

METABOLISM/NADH/FAD/TRYPTOPHAN II

10498 0A	**Two-photon luminescence lifetime imaging microscopy (LIM) to follow up cell metabolism and oxygen consumption during theranostic applications** (invited Paper) [10498-9]
10498 0B	**Metabolic imaging for breast cancer detection and treatment: a role for mitochondrial Complex I function** (invited Paper) [10498-10]
10498 0G	**Multimodal autofluorescence detection of cancer: from single cells to living organism** [10498-15]

TECHNOLOGY AND IN VIVO IMAGING I

| 10498 0K | **Module for multiphoton high-resolution hyperspectral imaging and spectroscopy** [10498-19] |

FLIM/FRET/FCS I

| 10498 0Q | **Measuring upconversion nanoparticles photoluminescence lifetime with FastFLIM and phasor plots** (invited Paper) [10498-25] |
FLIM/FRET/FCS II

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10498 0T</td>
<td>Towards monitoring conformational changes of the GPCR neurotensin receptor 1 by single-molecule FRET (Invited Paper)</td>
<td>10498-28</td>
</tr>
<tr>
<td>10498 0W</td>
<td>FastFLIM, the all-in-one engine for measuring photoluminescence lifetime of 100 picoseconds to 100 milliseconds</td>
<td>10498-31</td>
</tr>
<tr>
<td>10498 0X</td>
<td>In vivo measurement of astrocytic endfoot Ca²⁺ and parenchymal vessel responses during 4-AP induced epilepsy using two-photon fluorescence lifetime microscopy</td>
<td>10498-32</td>
</tr>
</tbody>
</table>

SECOND/THIRD HARMONIC GENERATION

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10498 10</td>
<td>Second harmonic generation microscopy of the living human cornea</td>
<td>10498-35</td>
</tr>
</tbody>
</table>

TECHNOLOGY AND IN VIVO IMAGING II

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10498 14</td>
<td>Rapid in vivo vertical tissue sectioning by multiphoton tomography</td>
<td>10498-39</td>
</tr>
<tr>
<td>10498 16</td>
<td>In vivo three-photon imaging of deep cerebellum</td>
<td>10498-41</td>
</tr>
</tbody>
</table>

COHERENT RAMAN II

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10498 11</td>
<td>Integrated SRS and fluorescence imaging for study of thermogenesis and lipid metabolism in vivo (Invited Paper)</td>
<td>10498-52</td>
</tr>
</tbody>
</table>

COHERENT RAMAN III

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10498 1P</td>
<td>CARS molecular fingerprinting using a sub-nanosecond supercontinuum light source (Invited Paper)</td>
<td>10498-59</td>
</tr>
<tr>
<td>10498 1Q</td>
<td>In vivo study of lipid synthesis and lipolysis dynamics by stimulated Raman scattering microscopy</td>
<td>10498-60</td>
</tr>
</tbody>
</table>

TECHNOLOGY AND IN VIVO IMAGING III

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10498 1V</td>
<td>In vivo, two-color multiphoton microscopy using a femtosecond diamond Raman laser</td>
<td>10498-65</td>
</tr>
<tr>
<td>10498 1X</td>
<td>Adaptive optics plug-and-play setup for high-resolution microscopes with multi-actuator adaptive lens</td>
<td>10498-67</td>
</tr>
</tbody>
</table>
3D brain oxygenation measurements in awake hypertensive mice using two photon phosphorescence lifetime imaging [10498-68]

POSTER SESSION

10498 20 Simple fibre based dispersion management for two-photon excited fluorescence imaging through an endoscope [10498-70]

10498 22 Rapid and lossless bandwidth-switching of a fiber-based optical parametric oscillator for multimodal nonlinear microscopy [10498-72]

10498 23 Electronically tunable femtosecond all-fiber optical parametric oscillator for multi-photon microscopy [10498-73]

10498 24 Optimizing Ti:Sapphire laser for quantitative biomedical imaging [10498-74]

10498 25 Spatially confined photoinactivation of bacteria: towards novel tools for detailed mechanistic studies [10498-75]

10498 27 In vivo multiphoton and fluorescence lifetime imaging microscopy of the healthy and cholestatic liver [10498-77]

10498 28 Two-photon activation of endogenous store-operated calcium channels without optogenetics [10498-78]

10498 2A Comparison of excitation wavelengths for in vivo deep imaging of mouse brain (Student Poster Session Competition) [10498-110]

10498 2C Stimulated emission and spontaneous loss pump-probe microscopy for background removal [10498-81]

10498 2D Rapid volumetric multiphoton imaging with the combination of an ultrasound lens and a resonant mirror [10498-82]

10498 2G Enhancement of measurement speed and photon economy in multiphoton detected fluorescence lifetime imaging microscopy [10498-85]

10498 2J Label-free imaging of acanthamoeba using multimodal nonlinear optical microscopy [10498-87]

10498 2K Wide field video-rate two-photon imaging by using spinning disk beam scanner [10498-88]

10498 2L Improvement of two-photon microscopic imaging in deep regions of living mouse brains by utilizing a light source based on an electrically controllable gain-switched laserdiode [10498-89]

10498 2M Two-dimensional auto-correlation analysis and Fourier-transform analysis of second-harmonic-generation image for quantitative analysis of collagen fiber in human facial skin [10498-90]
Large scale serial two-photon microscopy to investigate local vascular changes in whole rodent brain models of Alzheimer's disease [10498-92]

Improving multiphoton STED nanoscopy with separation of photons by Lifetime Tuning (SPLIT) [10498-99]

Quantitative 3-dimensional imaging of auxin and cytokinin levels in transgenic soybean and medicago truncatula roots via two-photon induced fluorescence imaging (Student Poster Session Competition) [10498-101]

Polymer dots enable deep in vivo multiphoton fluorescence imaging of cerebrovascular architecture [10498-103]

Characterization of a reflective objective with multiphoton microscopy [10498-104]

Improved reference standards for femtosecond three-photon excitation of fluorescence in the wavelength range 950 - 1750 nm [10498-105]

Resolution enhancement of 2-photon microscopy using high-refractive index microspheres [10498-108]

Mueller tensor approach for nonlinear optics in turbid media (Student Poster Session Competition) [10498-109]

Monitoring agrochemical diffusion through cuticle wax with coherent Raman scattering [10498-113]

Novel snapshot hyperspectral imager for fluorescence imaging [10498-114]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Akiyama, Toshihiro, 1P
Alemán Hernández, Felipe Ademir, 24
An, Yifai, II
Andersen, Peter E., 20
Artal, Pablo, 10
Avila, Francisco, 10
Baldacchini, Tommaso, OK
Barberi, Benjamín, 0Q, 0W
Batista, Ana, 14
Becerra, Ales, 06
Billma, Hielke, 1X
Bobrov, Nikolai V., 27
Bonora, S., 1X
Börsch, Michael, 0T
Breunig, Hans Georg, 14
Breymayer, J., 0A
Brinkmann, Maximilian, 22, 23
Bueno, Juan, 10
Cagalinec, M., 0G
Capecchi, Mario R., 16
Castello, Marco, 2U
Castonguay, A., 2O
Ch, Yu-Rok, 2J
Chandler, Andrea, 37
Chandler, Lynn, 37
Chen, Congping, 1Q
Chen, Shean-Jen, 2D
Cheng, Pan, 2B
Chiang, Tsung-Yen, 2D
Chiu, Daniel T., 2Y
Chorvat, D., Jr., 0G
Choubal, Aakash M., 2Z
Coskun, Ulas, 0Q, 0W
Coto Hernández, Iván, 2U
Couderc, Vincent, 1P, 2J
Cunderlikova, B., 0G
Damseh, R., 2O
Daraefsheh, Arash, 33
Das, Subir, 2C
Delafontaine-Martel, P., 20
Deng, Fongyuan, 34
Diaspro, Alberto, 2U
Dimopoulos, Konstantinos, 20
Ding, Changqin, 34
Dudenikova, Varvara V., 04, 07, 27
Dunn, Andrew K., 1V, 2Y
Elagin, Vadim, 04
Enger, Jonas, 24
Ericsson, Marica B., 24, 25
Fallinich, Carsten, 22, 23
Fang, Yi-Cheng, 2L
Farewell, Anne, 25
Fellbaum, Carl, 2W
Fisher, Jon, 2W
Gaillard, Paul, 2W
Gaut, Nicholas P., 36
Gavrila, Alena I., 07
Giroud, Hélène, 0X
Grishhammer, Reinhard, 0T
Guru, Akash, 16
Hansborg, Dag, 24
Hase, Bij, 2M
Hassan, Ahmed M., 1V, 2Y
He, Hao, 28
He, Siong, 11, 0Q
Heikkilä, Thomas, 0T
Hellwig, Tim, 22, 23
Ho, Bo-Wei, 2C
Horikawa, J., 0G
Hsu, Chia-Wei, 2D
Hung, Jui-Hung, 2L
Hwang, Wonsang, 2G
Ignatova, Nadezhda, 04
Inoko, Akihito, 1P
Ito, Yoko, 2K
James, Jeemol, 24, 25
Jamett, Jeremy W., 1V, 2Y
Jawett, Nate, 2U
Kabir, Mohammad M., 2Z
Kaji, Yūichi, 1P, 2J
Kalilina, S., 0A
Kano, Hideaki, 1P, 2J
Kao, Fu-Jen, 2C
Kawakami, Ryosuke, 2L
Kim, Dongseon, 2G
Kim, Dug Young, 2G
Kobayashi, Isabaa, 1P, 2J
König, Karsten, 14
Kozawa, Yūichi, 2L
Kurokawa, Kazuo, 2K
Kuznetsova, Darío, 27
Lai, Reng-Jie, 2D
Lanzano, Luca, 2U
Lee, Hsien-Ming, 0Q
Lefebvre, J., 2O
Leproux, Philippe, 1P, 2J
Lesage, Frédéric, 0X, 1Y, 2O
Li, Baolong, 1Y
Li, Bo, 16, 2A
Li, Xuesong, 11, 1Q
Li, Yan, 1Q
Liao, Shih-Chu Jeff, 0Q, 0W
Uige, L., 0A
Lu, Yen-Jiang, 2Y
Lu, Xuecong, 0X, 1Y
Lukina, Maria, 04
Lukyanov, Konstantin A., 07
Maeda, Yasuhiro, 2K
Mai, Ho Yi, 1Q
Mandel, A., 0A
Marcek Chorvatova, A., 0G
Martí, Domènec, 20
Mikhailov, Alexander, 30
Miller, David R., 1V, 2Y
Moelini, Mohammad, 0X, 1Y
Moger, Julian, 36
Moon, SuCheil, 2G
Mortensen, Luke J., 33
Naikano, Akihiko, 2K
Nakano, Hyung-Song, 16
Nemoto, Tomomi, 2L
Nurmalasari, Ni Putu Dewi, 2W
Ogura, Yukii, 2M
Orlinskaya, Natalia, 04
Oshika, Tetsuro, 1P, 2J
Otomo, Kohei, 2L
Ozounov, Dimitre G., 16
Padia, Faheem, 36
Peralvathy, Ammaši, 37
Perillo, Evan P., 1V, 2Y
Phong, Sendy, 33
Pozzi, P., 1X
Qin, Zhongya, 1Q
Qi, Haifin, 0Q
Qu, Jianan Y., 11, 1Q
Quintavalla, M., 1X
Ramanujan, V. Krishnan, 08
Rebane, Aleksander, 30
Rodimova, Svetlana A., 27
Rothe, Sebastian, 24
Rück, A., 0A
Sakadžić, Sava, 1Y
Sato, Shinichir, 2L
Sawada, Kazuki, 2L
Schäfer, P., 0A
Schestovskiy, Vladislav, 04
Sergeeva, Tatiana F., 07
Shirmanova, Marina V., 04, 07
Shivilko, Irena, 04
Simpson, Garth J., 34
Sinefeld, David, 16, 2A
Sivaguru, Mayandil, 2Z
Smith, Steve, 2W
Studier, Hauke, 06
Subramaniam, Sen, 2W
Sun, Yuansheng, 0Q, 0W
Tabatabai, Maryam, 0X
Tanaka, Yui, 2M
Tan, Wanyi, 28
Tardif, P., 2C
Tehranlou, Kayvan Forough, 33
Thomsen, Hanna, 24, 25
Thomson, Niall, 36
Tortarolo, Giorgio, 2U
Toussaint, Kimani C., Jr., 2Z
Ulčickas, James R. W., 34
Verhaegen, Michelle, 1X
Verstraete, Hans, 1X
Vicidomini, Giuseppe, 2A
von Arnim, C., 0A
von Binem, B., 0A
Wada, Satoshi, 2K
Wang, Mengran, 16, 2A
Wang, Tianyu, 16
Warden, Melissa R., 16
Wetzker, Cornelia, 06
Won, Youngjae, 2G
Wu, Chunjiao, 16, 2A
Wu, Xue, 2Y
Wu, Zhenguo, 11
Xia, Fei, 2A
Xu, Chris, 16, 2A
Xu, Shihao, 2Y
Yamasaki, Tatsunobu, 2M
Yasui, Takeshi, 2W
Yeh, Hsin-Chih, 2Y
Yokoyama, Hiroaki, 2L
Yu, Jiangbo, 2Y
Zadoyan, Ruben, 0K
Zagaynova, Vladimir E., 27
Zagaynova, Elena V., 04, 07, 27
Zeytunyan, Aram, 0K
Zhang, Cong, 0X, 1Y
Conference Committee

Symposium Chairs

James G. Fujimoto, Massachussetts Institute of Technology
(United States)
R. Ross Anderson, Wellman Center for Photomedicine, Massachussetts General Hospital (United States) and Harvard Medical School
(United States)

Program Track Chairs

Ammasi Periasamy, University of Virginia (United States)
Daniel L. Farkas, University of Southern California (United States) and SMI (United States)

Conference Chairs

Ammasi Periasamy, University of Virginia (United States)
Peter T. C. So, Massachussetts Institute of Technology (United States)
Karsten König, Universität des Saarlandes (Germany)
Xiaoliang S. Xie, Harvard University (United States) and Peking University (China)

Conference Program Committee

Holly Aaron, University of California, Berkeley (United States)
Margarida Barroso, Albany Medical College (United States)
Wolfgang Becker, Becker & Hickl GmbH (Germany)
Alberto Diaspro, Istituto Italiano di Tecnologia (Italy)
Chen-Yuan Dong, National Taiwan University (Taiwan)
Paul J. Campagnola, University of Wisconsin-Madison (United States)
Ji-Xin Cheng, Purdue University (United States)
Kevin W. Eliceiri, University of Wisconsin-Madison (United States)
Scott Fraser, University of Southern California (United States)
Paul M. W. French, Imperial College London (United Kingdom)
Katsumasa Fujita, Osaka University (Japan)
Enrico Gratton, University of California, Irvine (United States)
Min Gu, RMIT University (Australia)
Stefan W. Hell, Max-Planck-Institut für Biophysikalische Chemie (Germany)
Fu-Jen Kao, National Yang-Ming University (Taiwan)
Arnd K. Krueger, Spectra-Physics (United States)
Joseph R. Lakowicz, University of Maryland School of Medicine (United States)
Steve M. McDonald, Coherent, Inc. (United States)
Wei Min, Columbia University (United States)
Junle Qu, Shenzhen University (China)
Angelika C. Rueck, Universität Ulm (Germany)
Yuansheng Sun, ISS, Inc. (United States)
Steven S. Vogel, National Institutes of Health (United States)
Chris Xu, Cornell University (United States)
Elena V. Zagaynova, Nizhny Novgorod State Medical Academy (Russian Federation)
Bernhard Zimmermann, Carl Zeiss Jena GmbH (Germany)

Session Chairs

1. Keynote Session
 Ammasi Periasamy, University of Virginia (United States)

2. Metabolism/NADH/FAD/Tryptophan I
 Angelika C. Rueck, Universität Ulm (Germany)

3. Metabolism/NADH/FAD/Tryptophan II
 Elena V. Zagaynova, Nizhny Novgorod State Medical Academy (Russian Federation)
 Marina V. Shimanova, Nizhny Novgorod State Medical Academy (Russian Federation)

4. Technology and In Vivo Imaging I
 Peter T. C. So, Massachusetts Institute of Technology (United States)

5. FLIM/FRET/FCS I
 Kevin W. Eliceiri, University of Wisconsin-Madison (United States)

6. FLIM/FRET/FCS II
 Yuansheng Sun, ISS, Inc. (United States)
 Margarida Barroso, Albany Medical College (United States)

7. Second/Third Harmonic Generation
 Paul J. Campagnola, University of Wisconsin-Madison (United States)

8. Technology and In Vivo Imaging II
 Fu-Jen Kao, National Yang-Ming University (Taiwan)

9. Coherent Raman I
 Ji-Xin Cheng, Purdue University (United States)
10 Coherent Raman II
Wei Min, Columbia University (United States)

11 Coherent Raman III
Lingyan Shi, Columbia University (United States)

12 Technology and In Vivo Imaging III
Ammasi Periasamy, University of Virginia (United States)
Introduction

Multiphoton microscopy has been established as the 3-D imaging method of choice for studying biomedical specimens from single cells and whole animals to patients with sub-micron resolution. 27 years have passed since the realization of two-photon laser scanning microscopy. The ever-expanding scope of applications and the continuing instrumental innovations requires a forum where new ideas can be exchanged and presented. Our conference at the SPIE BIOS 2018 meeting continues to address this need.

This is the 18th year of this conference and we start our conference with four Keynote lectures from leaders in the field of Metabolism:

Dr. Wei Min, Columbia University, NY, USA, “Seeing molecular vibrations: Chemical imaging for biomedicine.”
Dr. Enrico Gratton, University of California at Irvine, CA, USA, “Spectroscopic signatures of cells metabolism and extracellular species using phasor-FLIM.”
Dr. Elena V. Zagaynova, Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russian Federation, “Metabolic imaging of tumor for diagnosis and response for therapy.”
Dr. Lihong V. Wang, California Institute of Technology, CA, USA, “Photoacoustic tomography: Ultrasonically beating optical diffusion for deep imaging.”

For 18 years in a row, the conference organized poster awards for the students and postdoctoral fellows. The poster award was donated by all the conference sponsors as acknowledged at the bottom of the page.

The 2 poster award winners are

Some of the most valuable contributions in this volume are articles written by highly experienced practitioners of multiphoton microscopy. They have enumerated the most important considerations in designing multiphoton microscopes and imaging experiments. Further, updates on the state-of-the-art commercial multiphoton microscope systems are presented. This volume also includes articles describing some recent advances in major multiphoton microscope components and applications including laser light sources, ultra-fast optics, filters, FRET, FLIM, FCS, Raman, CARS, SRS and Coherent Raman microscopy and spectroscopy, single molecule, endoscopy, In Vivo/Intravital imaging, metabolism measurements including NADH, FAD, tryptophan in cells and tissues and various scientific and clinical applications.
On a personal note, the conference chairs are grateful for the participation of all authors and session chairs. We acknowledge the innovation-driven manufacturers and sponsors of this conference (Applied Scientific Instrumentation, Becker & Hickl GmbH, Carl Zeiss, Chroma Technology Corp., Coherent Inc., ISS Inc., JenLab GmbH, Leica Microsystems, PicoQuant Photonics, Semrock Inc., and Spectra Physics & Newport [An MKS Company]) for their enthusiastic support in organizing this conference successfully for the last 18 years. We look forward to other exciting conferences in the future and welcome your continued participation and support.

Ammasi Periasamy
Peter T. C. So
Karsten König
Xiaoliang S. Xie