20 February 2018 The theory behind the full scattering profile
Author Affiliations +
Abstract
Optical methods for extracting properties of tissues are commonly used. These methods are non-invasive, cause no harm to the patient and are characterized by high speed. The human tissue is a turbid media hence it poses a challenge for different optical methods. In addition the analysis of the emitted light requires calibration for achieving accuracy information. Most of the methods analyze the reflected light based on their phase and amplitude or the transmitted light. We suggest a new optical method for extracting optical properties of cylindrical tissues based on their full scattering profile (FSP), which means the angular distribution of the reemitted light. The FSP of cylindrical tissues is relevant for biomedical measurement of fingers, earlobes or pinched tissues. We found the iso-pathlength (IPL) point, a point on the surface of the cylinder medium where the light intensity remains constant and does not depend on the reduced scattering coefficient of the medium, but rather depends on the spatial structure and the cylindrical geometry. However, a similar behavior was also previously reported in reflection from a semi-infinite medium. Moreover, we presented a linear dependency between the radius of the tissue and the point's location. This point can be used as a self-calibration point and thus improve the accuracy of optical tissue measurements. This natural phenomenon has not been investigated before. We show this phenomenon theoretically, based on the diffusion theory, which is supported by our simulation results using Monte Carlo simulation.
© (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Idit Feder, Idit Feder, Hamootal Duadi, Hamootal Duadi, Dror Fixler, Dror Fixler, "The theory behind the full scattering profile ", Proc. SPIE 10506, Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XV, 1050611 (20 February 2018); doi: 10.1117/12.2287657; https://doi.org/10.1117/12.2287657
PROCEEDINGS
7 PAGES


SHARE
Back to Top