The main objective of this paper is crystallization of semi-insulating material with resistivity ~109 Ωcm in temperature range between 296 K and 1000 K. No free carriers should be activated at elevated temperature. Source of Mn dopant will be metallic manganese. Hydrochloride flow will be set above the Mn source and as a result of reaction MnCl2 will form. Manganese dichloride will be transported to the growth zone of GaN. The following growth parameters will be established and analyzed: i/ growth temperature, ii/ flows of gas reagents (HCl above gallium, HCl above metallic Mn, ammonia), iii/ carrier gas composition (N2, H2, mixture of N2 + H2, or nonreactive gas), iv/ temperature of metallic Mn source. Determining proper parameters should result in a stable growth of HVPE-GaN:Mn crystals with a desired morphology (hillocks). Distribution of manganese dopant will be uniform in the grown layer. HVPE-GaN:Mn will be thicker than 1 mm. Their diameter will depend on the used seed – up to 2-inch. The layers will be removed from the seeds by slicing procedure and as a result free-standing HVPE-GaN:Mn will be obtained. Structural, optical and electrical properties of this material will be examined and presented.
|