You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
14 March 2018Control of coherently-coupled exciton-polaritons in monolayer tungsten disulphide (Conference Presentation)
Monolayer transition metal dichalcogenides (TMD) with confined 2D Wannier-Mott excitons are intriguing for the fundamental study of strong light-matter interactions and the applications of exciton-polaritons based devices at high temperatures. However, the research of 2D exciton-polaritons has been hindered, because the polaritons in these atomically thin semiconductors discovered so far can hardly support strong nonlinear interactions and quantum coherence due to uncontrollable polariton dynamics and weakened coherent coupling. In this work, we demonstrate, for the first time, precisely controlled hybrid composition with angular dependence and dispersion-correlated polariton emission by tuning the polariton dispersion in TMD over a broad temperature range of 110-230 K in a single cavity. This tamed polariton emission is achieved by the realization of robust coherent exciton-photon coupling in a monolayer tungsten disulphide (WS2) with large splitting-to-linewidth ratios (SLR, >3.3). The unprecedented ability to manipulate the dispersion and correlated properties of TMD exciton-polariton at will offers new possibilities to explore important quantum phenomena such as Bose–Einstein condensation (BEC) and superfluidity, but also holds great promise to applications for the inversionless lasers and valleytronic devices.