26 January 2018 Novel cubic phase III-nitride complementary metal-oxide-semiconductor transistor technology
Author Affiliations +
Here we propose a new wide band gap logic circuitry providing emerging power electronics with reliable logic control capabilities with 500 MHz+ switching speeds and withstanding 300V+. Particularly, a three-stage ring oscillator composed of NMOS (μe = 1000 cm2/V-s) and PMOS (μh = 250 cm2/V-s) cubic phase GaN devices (with VT of 0.77 V and –0.84 V, respectively) is simulated. The propagation delay is minimized by optimizing the width-to-length ratio (W/L) between the NMOS and PMOS devices. Transient response of the simulation illustrates the ability of the CMOS inverter to operate at a maximum frequency of 1.22 GHz with a full voltage swing between VDD of 2.5 V and 0 V. The proposed cutting-edge p-channel GaN high hole mobility transistor (HHMT) solves one of the most longstanding problems in power electronics and constitutes the basis of an innovative reduced total life cycle cost that will serve as the cornerstone of the next generation of integrated, scalable, and reliable power systems.
Conference Presentation
© (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
C. Bayram, R. Grady, K. Park, "Novel cubic phase III-nitride complementary metal-oxide-semiconductor transistor technology", Proc. SPIE 10540, Quantum Sensing and Nano Electronics and Photonics XV, 105401G (26 January 2018); doi: 10.1117/12.2286738; https://doi.org/10.1117/12.2286738

Back to Top