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ABSTRACT 
Optical Satellite Downlinks have gathered increasing attention in the last years. A number of experimental 
payloads have become available, and downlink experiments are conducted around the globe. One of these 
experimental systems is SOTA, the Small Optical Transponder, built by the National Institute of Information 
and Communications Technology (NICT). 
This paper describes the downlink experiments carried out from SOTA to the German Aerospace Center’s 
Optical Ground Stations located in Oberpfaffenhofen, Germany. Both the Transportable Optical Ground Station 
(TOGS) as well as the fixed Optical Ground Station Oberpfaffenhofen (OGS-OP) are used for the experiments. 
This paper will explain the preparatory work, the execution of the campaign, as well as show the first results of 
the measurements. 
 
 
I. INTRODUCTION 
Optical communication downlinks from low Earth orbit (LEO) satellites may be a solution to overcome the 
existing bottleneck in transmitting e.g. Earth observation data to the ground. The high data-rates offered by 
optical communication technologies, and the low size, weight and power (SWaP) required by optical terminals, 
make them an attractive solution in a number of applications. 
After decades of research, and with exhaustive use of optical technologies in terrestrial applications, the first 
space applications of optical communication links are becoming a reality, as is e.g. shown by the optical links 
employed in the European Data Relay System (EDRS) [1], or the Lunar Laser Communication Demonstration 
(LLCD) [2]. 
Since about ten years, experimental optical downlinks from LEO-spacecraft to Earth have been performed as 
well. Probably the first downlinks were performed with the KIRARI satellite by JAXA, NICT and others [3–5]. 
In the recent years, a number of further experimental payloads have been launched. NASA-JPL had great 
success with OPALS, the Optical PAyload for Lasercomm Science [6], [7], which has been installed aboard the 
ISS and performed successful experiments between ISS and ground. 
Furthermore, NICT has developed SOTA, the Small Optical TrAnsponder, which has been embarked on the 
SOCRATES satellite and is the main subject of this paper. SOCRATES has been launched on 24th of May, 
2014, and a number of experiments to NICT’s optical ground station in Tokyo have been performed [8], as well 
as to international partners [9]. 
Besides that, the German Aerospace Center (DLR) has been developing experimental optical communication 
payloads within its OSIRIS project as well. The second OSIRIS generation, which has been embarked aboard 
DLR’s BIROS satellite [10], has been launched on 22nd of June, 2016, and will be tested in-orbit in Fall 2016. 
 
 
II. SMALL OPTICAL TRANSPONDER 
The National Institute of Information and Communications Technology (NICT) in Japan has developed a Small 
Optical TrAnsponder (SOTA), which has been mounted on the Space Optical Communication Research 
Advanced Technology Satellite (SOCRATES), launched on 24th of May, 2014 [11]. The SOTA mission has 
reached full mission success level in June, 2015 and as a part of the extra success activities NICT has started 
several international collaborations for experiments between SOTA and different optical ground stations (OGS) 
around the Globe [12]. 
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A. SOTA Interface 
The SOTA interface is shown in Fig 1 and the downlink characteristic of SOTA are shown in Table 1. SOTA is 
equipped with four laser sources, Tx2 and Tx3 are reserved for polarization measurements related to future 
satellite-to-ground QKD experiments and are part of the extra success mission. The main wavelength, used for 
international experiments is 1549 nm (Tx4) since it allows atmospheric propagation measurements on the main 
wavelength of interest for future missions. Optional wavelength is 976 nm (Tx1) but in this case only the coarse 
tracking is available (marked as “Acquisition and tracking sensor” in Fig 1) since the fine tracking is within the 
Tx4 module (marked as “Rx” in Fig 1). The beam parameters for both wavelengths are shown in Table 1.  

 

 
Fig 1. Scheme of the transmitter and coarse tracking sensor positions 

 
Table 1. SOTA downlink characteristics 

Parameter Tx1 Tx4 Others 

Wavelength (nm) 976 1549 at 25degree Celsius, 
0.1nm/deg 

Polarization Random RHCP  

Data rate (Mbps) 10 or 1 10 or 1 Selectable 

Intensity (MW/sr) 0.89 0.57  

Divergence angle (µrad) 500 223 -3dB Full width 

Pointing loss (dB) -3.4 -5.7  

Atmospheric loss (dB) -5.6 -3.9 at NICT OGS 

Irradiance (nW/m2) 112 63 at ground, 1000km 
distance 

Modulation OOK OOK 
NRZ, PRBS-15, the 

generating polynomial is 
X^15+X^14+1. 

 
For transmission PBRS-15 signal with a rate of 10 Mbps has been chosen. 
The uplink beacon should be at 1064 nm wavelength in order for SOTA to be able to detect it (Table 2). Careful 
calculation of the beacon divergence angle and the transmit power is necessary in order to guarantee irradiance 
levels that are enough for smooth beacon acquisition. Furthermore, the beacon light must hit SOTA for several 
seconds so that SOTA gimbals can point to the OGS station and start successful tracking. This is necessary due 
to the very slow gimbal movement in order not to affect the satellite orbit. 

 
Table 2. SOTA uplink (tracking and acquisition) characteristics 

Issues Acquisition and 
coarse tracking 

Fine tracking 

Wavelength (nm) 1064 ± 3 1064 ± 3 

Required irradiance (µW/m2) 11~209 11~209 

 
The experiment flow is shown in Fig 1. First, the laser diode of SOTA is switched on and both SOTA and the 
OGS are in open pointing mode – SOTA is pointing to the supposed position of the OGS, and the OGS is 
tracking SOCRATES based on orbital information in TLE format. Then, the beacon from the OGS is switched Proc. of SPIE Vol. 10562  1056247-3
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on. When its light is registered in the SOTA QD sensor, coarse tracking (gimbal moving) and, if available, fine 
tracking takes place and as a result the SOTA signal will be received in the OGS and data receiving will take 
place. 

 
 

 
Fig 2. Experiment flow (Image source: NICT) 

 
 
III. Description of ground segment 
The ground segment for SOTA-downlinks to Oberpfaffenhofen consists of two optical ground stations, namely 
DLR’s Transportable Optical Ground Station (TOGS) and DLR’s Optical Ground Station Oberpfaffenhofen 
(OGS-OP). TOGS has been equipped with the required beacon laser system and was responsible for link 
acquisition with SOTA. OGS-OP focused on recording atmospheric measurements. 
 
A. Transportable Optical Ground Station (TOGS) 
The Transportable Optical Ground Station (TOGS) features a pneumatically deployable telescope with a main 
mirror diameter of 60 cm [13]. It is a Cassegrain-Telescope in Ritchie-Chrètien configuration with main and 
secondary mirror. Both mirrors are manufactured from aluminum for robustness, and the telescope mount itself 
is manufactured of carbon fiber to make it light-weight, robust and stiff. It is supported on the ground by four 
manually mounted supports that provide levelling of the station and compensation for ground roughness. The 
TOGS telescope can be automatically folded in and out of the transport box within few seconds to achieve a 
short installation and setup time. In addition, the body of the TOGS itself contains all necessary control units for 
calibration and operation. 
A picture of TOGS and its optical system, which is embarked behind the telescope, is shown in Fig 3. The 
optical signal received at the telescope is collimated with a lens. The collimated signal is splitted using a 90/10 
optical splitter. 10% of the signal is sent to the tracking sensor for closed-loop tracking, while 90% of the power 
is guided to the receiver front-end (RFE) that converts the received optical signal to electrical and provides data 
to the transceiver for decoding the received data.  
For the SOTA experiments, two beacon laser sources with 1064 nm were installed aside the telescope. The 
placement on the left and right sight of the telescope, respectively, ensured a higher average power as well as 
transmitter diversity for reduced fading at the satellite. 
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Fig 3. Left: Transportable optical ground station (TOGS); Right: Optical System of TOGS (Image source: DLR) 

 
In order to achieve good pointing, acquisition and tracking (PAT), control software for the TOGS is written in 
C++ and installed in a PC with real-time linux kernel. The PAT process in TOGS can be explained with the help 
of Fig 4. For initial pointing, TOGS uses its own GPS position and the orbit information of the satellite (which, 
in the case of SOTA, is in two line element (TLE) format) and the current time to calculate the pointing angle 
and commands the telescope mount to point towards the satellite. This process is named open-loop or blind 
pointing. The blind pointing accuracy of the TOGS must be sufficient to hit the satellite within the beacon 
laser’s divergence. Once the satellite terminal acquires the beacon signal, it starts close-loop tracking and 
transmits the signal. TOGS then acquires the signal and as soon as the signal is detected on the tracking camera, 
closed-loop tracking is activated on the TOGS. 
To obtain a sufficient blind pointing accuracy for TOGS has been one of the challenges during ites 
development. Reliable timing accuracy, improved tracking algorithms and a good referencing based on a star 
calibration made the experiment successful. Calibration of the TOGS was one of the crucial aspects, as the 
TOGS consists of both mechanical structure and optical elements, which are not perfectly aligned and 
introduces some errors in different directions. Such errors could be azimuth- or elevation offsets, non-
perpendicularity of azimuth and elevation axis, non-perpendicularity of optical axis, tilt of axes etc. Such errors 
cannot be compensated by adding simple offsets and therefore require good star calibration and derivation of 
pointing model parameters which can compensate those errors. In addition, the timing behavior of the software 
was significantly improved by using an additional GPS time reference and a real-time kernel for the operating 
system. During the experiment, SOTA and TOGS were able to acquire the signal immediately and track their 
optical signals throughout the link.  
 

Software 

TOGS PAT software

Telescope Mount

Pointing angle 
(target position/velocity) Current Position

Pointing
Model

SOTA terminal

Tracking 
Camera

Satellite 
TLE

TOGS position 
+ timestamp

Optical SignalBeacon Signal

error image

 
Fig 4. Block diagram showing pointing, acquisition and tracking of the TOGS (Image Source: DLR) 

 
B. Optical Ground Station Oberpfaffenhofen 
The OGS-OP is the stationary partner lab of the TOGS with a higher focus on research experiments and 
flexibility [14]. The station is designed in a way to easily integrate and exchange measurements devices and 
laser systems. The generic functional block diagram is shown in Fig 5. The incident beam enters the telescope. 
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The collimations optics collimate and compress the beam for further processing. An optional fine pointing 
assembly (FPA) stabilizes the beam by use of signals from the NFoV camera (Narrow Field of View) and FPA 
control. The free-space coupling systems splits the signal and distributes it to the measurement devices, receiver 
front-end (RFE) and NFoV camera. The black vertical bar denotes components that are assembled on the 
telescope mount and therefore mechanically coupled. The mount is controlled by using signals from the WFoV 
camera (Wide Field of View). Two 2 inch side telescope focus light on a PIN diode or APD for separate power 
measurements. The laser and beacon telescopes are not installed for the SOTA experiments since the TOGS is 
used for link acquisition. The installed measurement devices behind the 40 cm telescope are a PIN diode for 
power measurements and a pupil camera for characterization of irradiance and power scintillation. 
 

  

Fig 5. Left: generic functional block diagram of OGS-OP; Right: Image of open dome with 40 cm 
Cassegrain telescope (Image Source: DLR). 

 
 

IV. Conducted Experiments & Results 
On May 6th, 2016, a downlink between SOTA and TOGS as well as OGS-OP was set up. The most important 
parameters of the satellite overflight are shown in Table 3. 
 

Table 3. Characteristics of SOTA downlink to Oberpfaffenhofen 
Parameter Value Comment 

Start time of experiment 22:54:00 UTC 

Start elevation of experiment 26.7°  

End elevation of experiment 22:55:45 UTC 

End elevation of experiment 54.6°  

Maximum elevation of overflight 56°  

 
 

In Fig 6 we show the telemetry data for the received optical power in the coarse pointing quadrant detector 
(QD). The necessary count level for smooth tracking and acquisition of SOTA is 300 and it must be maintained 
for up to several seconds. We can see that we have a stable and strong signal through the whole pass. SOTA 
cannot operate under daylight due to QD sensor saturation; this is the reason to have shorter pass only up to the 
equinox.  
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Fig 6. SOTA telemetry measured during the downlink experiment. (Image source: NICT) 

 
Fig 7 shows images of the tracking cameras of TOGS and OGS after link closure. 
 

  

Fig 7. Tracking camera images of TOGS (left) and OGS-OP (right) after link acquisition and engagement 
of closed optical tracking loops. (Image source: DLR) 

 
 
Fig 7 (left) shows the scintillation signal over elevation received by the OGS-OP sampled with 20 kS/s. Signal 
amplitude increases with elevation as expected. The signal shows that link lock was achieved between 32° and 
55°. The right image shows an example record of the pupil camera at 54° elevation. The annular shape is caused 
by the secondary mirror of the Cassegrain telescope. The four cuts at the edges arise from the holder clamps of 
the primary mirror. The speckle pattern of the irradiance scintillation pattern is clearly visible. The vertical 
background lines are artefacts from the camera electronics.  
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Fig 8. Left: recorded scintillation signal during SOTA downlink. Right: example of unprocessed pupil 
camera image of scintillation signal. (Image source: DLR) 

 
 
V. Summary & Conclusions 
The National Institute of Information and Communications Technology (NICT) and the German Aerospace 
Center (DLR) could demonstrate an optical downlink between NICT’s Small Optical TrAnsponder (SOTA) and 
DLR’s optical ground stations TOGS and OGS-OP in Oberpfaffenhofen, Germany. The main focus of the 
experiment was the gathering of atmospheric measurement data with the instruments of OGS-OP. The systems 
involved, both in the space- and ground-segment, as well as sensor data from both sides has been presented in 
this paper. Further evaluation of the measured data is currently ongoing and further SOTA downlinks with the 
goal of gathering more atmospheric measurement data might be conducted in Fall 2016. 
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