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I. INTRODUCTION 

LYRA is a solar radiometer, part of the PROBA-2 micro-satellite payload (Fig. 1). The PROBA-2 [1] 
mission has been launched on 02 November 2009 with a Rockot launcher to a Sun-synchronous orbit at an 
altitude of 725 km. Its nominal operation duration is two years with possible extension of 2 years. PROBA-2 is 
a small satellite developed under an ESA General Support Technology Program (GSTP) contract to perform an 
in-flight demonstration of new space technologies and support a scientific mission for a set of selected 
instruments [2]. PROBA-2 host 17 technological demonstrators and 4 scientific instruments. The mission is 
tracked by the ESA Redu Mission Operation Center. 

    One of the four scientific instruments is LYRA that monitors the solar irradiance at a high cadence (> 20 
Hz) in four soft X-Ray to VUV large passbands: the “Lyman-Alpha” channel, the “Herzberg” continuum range, 
the “Aluminium” and “Zirconium” filter channels. The radiometric calibration is traceable to synchrotron source 
standards [3]. LYRA benefits from wide bandgap detectors based on diamond. It is the first space assessment of 
these revolutionary UV detectors for astrophysics. Diamond sensors make the instruments radiation-hard and 
solar-blind (insensitive to the strong solar visible light) and, therefore, visible light blocking filters become 
superfluous. To correlate the data of this new detector technology, silicon detectors with well known 
characteristics are also embarked.  Due to the strict allocated mass and power budget (5 kg, 5W), and poor 
priority to the payload needs on such platform, an optimization and a robustness of the instrument was 
necessary. The first switch-on occured on 16 November 2009. Since then the instrument performances have 
been monitored and analyzed during the commissioning period. This paper presents the first-light and 
preliminary performance analysis. 
 

 
 

Fig. 1. LYRA instrument (left) and LYRA on the PROBA-2 spacecraft (right) 
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II. LYRA CHARACTERISTICS 

 LYRA monitors the solar integrated flux in 4 X-Ray and VUV passbands at a high sampling frequency. The 
4 passbands have been chosen for their relevance to solar physics, space weather, and Earth aeronomy:  

 Channel 1: 115-125 nm  (Lyman-Alpha passband) 
 Channel 2: 200-220 nm  (Herzberg passband continuous range)  
 Channel 3: 17-70 nm  (Aluminium filter, EUV passband, including 30.4 nm He II line)  
 Channel 4: 1-20 nm  (Zirconium filter, soft X-Ray passband) .  

The scientific goals as well as a complete description of the LYRA payload are detailed in [4]. In Figure 1 
(left panel) we show the LYRA instrument with its three identical units and (right panel) the instrument 
mounted on the PROBA-2 spacecraft. The introduction of 3 times the same set of channels is required to fulfil a 
special redundancy strategy. One set of channels is used continuously, the second on a weekly basis, while the 
last remains closed most of the time and is only used a few times during the mission. In this way, the evolution 
of radiometric sensitivity of the sensors and filters can be assessed. Furthermore, the use of LEDs, located 
behind the filters, will help disentangle filter and detector aging. In addition, the redundancy concept is 
enhanced by using three types of detectors, the PIN-type and MSM-type diodes that are radiation hard and solar 
blind diamond UV sensors, and AXUV silicon photodiodes. 
 
III. FIRST LIGHT 

Two weeks after launch, on 16 November, 2009, the LYRA electronic system was switched on for the first 
time and the reception of the first housekeeping values was confirmed and found to be nominal. The LYRA 
temperatures vary between 27.4 and 33°C all along the orbit. These variations are due to the presence of  
eclipses every orbit. During the following weeks, all the functions of LYRA were tested, such as bake-out, 
decontamination procedure, dark current, calibration procedure, determination of the nominal integration time, 
and characterization of the LED stability signal. 

After the winter hibernation period of the spacecraft, the first lights were observed on 05 January 2010. The 
doors were unlocked without any problem despite the criticality of the operation and were opened one by one. 
The first data acquired with covers opened did not correspond to Sun signal because the spacecraft was pointed 
away from the Sun.  Then, real first light measurements were acquired after the spacecraft has been pointed 
back to Sun-center (Fig. 2 and Fig.3).  Amongst other observations, first light acquisitions show a very strange 
noise in some channels, appearing consecutively to an ASIC reload, and which in most cases disappears when 
the signal drops under a certain level (during eclipses or when closing covers). Several tests not originally 
foreseen in the commissioning plan were performed to understand this behaviour without affecting the success 
of commissioning. The noise problem was mostly solved by closing the cover after each ASIC reload, but it is 
not possible to accurately foreseen the time when the ASIC will be reloaded. Nevertheless, since so far we have 
never encountered problems due to SEU (which was the main reason for reloading the ASIC). Therefore, it has 
been decided to cancel, for the time being, all ASIC reloads.  

To complete these first light operations, reference acquisitions at all possible integration times were carried 
out. Continuous LED signal with an integration time of 500 ms were also acquired. Those data will be used in 
the long term to determine whether the level of signal for each channel is stable or decreases (and hence whether 
the detectors are degrading). 

During the commissioning phase, it was also demonstrated that there was no problem in combining LYRA 
activities with the EUV imager SWAP. This is important to allow comparison and completion between the two 
instruments on the same observation periods. It was also assessed that LYRA and SWAP are well co aligned. 

IV. IN-FLIGHT PERFORMANCES 

The analysis of the first light provides already a lot of information about the operation and the science of 
LYRA. What is clearly observed is: 

 the presence of eclipses (by the Earth) in each orbit 
 the crossing of South Atlantic Anomaly (SAA) 
 the slow stabilization of MSM diamond detectors (channels 1 and 3 of unit 1, and channels 1, 3 

and 4 of unit 2 (Fig.2)), already know from the on- ground characterization 
 the signal affected by the satellite’s large angle rotations (4 times per orbit) 
 occasional appearance of “noisy data”  
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Fig. 2. First light sun pointing on head 2. The noisy 
data are observed on channel 2 and 4 of head 2. The 
small bumps are linked to spacecraft rotation. The 

spacecraft makes a 90° spin rotation 4 times per orbit 

 
Fig. 3. First light sun pointing on head 3. The noise on 

the channel 1, 3 and 4 is coming from the South 
Atlantic Anomaly (SAA) 

 
 
IV.1 Occultation 

From the launch till end of February, on every orbit, the spacecraft crossed an “eclipse” zone, in which the 
Sun was occulted by the shadow of the Earth. Before entering and when exiting the shadow of the Earth, the 
instrument observed through the Earth atmosphere, which absorbed part of the solar signal. The curve of such 
an “occultation” is presented below (Fig. 4) for unit 2. As expected, shorter wavelengths are absorbed sooner 
than the longer ones. However, the small bump in the Lyman-Alpha curve (Channel 2-1) was unexpected. It 
appears on all three units curves and might be caused by a contamination of the Lyman-Alpha channel by longer 
wavelengths. The problem is still under investigation. These data are very useful for the study of atmospheric 
absorption and will give inputs to atmospheric models. 
 

 
 

Fig. 4. Overplot of the successive sunsets and sunrises in one day for all four channels 
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IV.2 Flares 
Flares up to M level have been already observed with LYRA (Fig. 5). A comparison with GOES 14 has 

shown that LYRA was able to detect all the events listed by GOES (unless it was not observing Sun at the time 
of the flare) down to level B1.5. LYRA provides a good correlation to GOES flares but with a better temporal 
resolution. Most of the time, flares are detected in Al and Zr channels. But a few exceptionally strong and 
impulsive flares also show variations in Lyman-Alpha. 
 
IV.3 Degradation 

From the time the covers have been opened, LYRA unit 2 (which is the one used nominally) has degraded 
(see Fig. 6), especially in Lyman-Alpha and Herzberg channels. So far, Lyman-Alpha is the channel having the 
most degraded, down to 40% of its initial signal level. This degradation tends to stop since February for Lyman- 
Alpha and since May for the Herzberg channel. Units 1 and 3 are being used much less frequently than unit2. 
With the help of the LEDs, it is observed that the detector signals remain the same. This indicates that there is 
no degradation of the detectors, but that the degradation comes from the filters. To compensate this problem, the 
degradation is calculated and introduced in the acquired data to produce correct and reliable monitoring data of 
the solar irradiation. 
 
IV.4  Bake out / decontamination 

A long bake out has been scheduled to see whether it was possible to decontaminate the instrument and 
recover part of the signal loss mentioned in the previous section. But no increase of the amount of signal was 
observed after the bake-out. 

 
 
Fig. 5. LYRA signal of flares M2 of 28 February 

2010, 13:47 UTC 
  

 

 
 
 

Fig. 6. Evolution of the LYRA degradation between 
January and -June 2010 of the most used Head 2 

 

IV.5  South Atlantic Anomaly (SAA) 
The  SAA is visible in the silicon-detector channels and, much less, in the diamond MSM channels either with 

an electronic gain 10 times higher. This effect is illustrated in the Figure 7, representing dark current curves for 
unit 1, where 

• channel 1 (Lyman-Alpha) is an MSM diamond detector with gain 10  
• channel 2 (Herzberg) is a PIN diamond detector (very stable) 
• channel 3 (Aluminium) is a MSM diamond detector with gain 1 
• channel 4 (Zirconium) is a Si detector  
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The locations where those perturbations are detected were transferred on a world map. The result clearly 

matches the SAA Observation tuning. These observations were already carried out before the LYRA first light. 
It demonstrated that the diamond technology is nearly not sensitive to the SAA. 
 

Ly alpha
Herzberg
Al
Zr

 
Fig. 7. Dark current curve of head 1 indicating the influence of the SAA 

 
 

IV.6  Solar eclipse by the moon 
On 15 January 2010, an annular solar eclipse happened above Asia. Seen from PROBA-2 the eclipse was 

partial. This allows to observe different homogeneity of irradiance distributions on the solar surface of EUV 
channels (Fig. 8) as compared to the chromospheric channels.  

Ly alpha
Herzberg
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Fig. 8. Relative irradiance data of all 4 channels during the solar eclipse of 15 January 2010 
 
IV.7. Routine activity 

After the commissioning phase and a correct understanding of the instruments, LYRA enters in its operational 
phase with the following iterative activities: 

The nominal acquisition is run with unit 2 with an integration time of 50 ms. Every week a calibration is 
carried out by measuring the dark signal and the LED signal. On a monthly basis back up acquisitions are 
performed with unit 1 and 3, as well as quasi-flat field which can be achieved by off- pointing of the spacecraft. 
Finally, every six months a bake out – decontamination is planned. These routine activities give a daily 
monitoring of the solar EUV and FUV irradiance with high temporal resolution. The data are reported on 
http://sidc.be/index.php. 
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V. CONCLUSIONS AND ACKNOWLEDGEMENTS 

The operational temperature of LYRA is close to 40°C instead of 25°C as intended. Degradation of filter 
transmission on a spacecraft is unavoidable and the rate of sensitivity loss is a measure of the cleanliness of the 
satellite which in the case of LYRA is rather adverse. Despite the unfavourable thermal and cleanliness 
environment at spacecraft level, the instrument works correctly and provides relevant scientific results [5].  

LYRA is a successful technological demonstration instrument. It is the first use of diamond detectors (of two 
types, PIN and MSM) for space scientific research. In-flight performance analyses have been started during the 
commissioning phase and are continued to improve knowledge of the instrument performance and capabilities. 
LYRA is thus a preparatory instrument for other similar radiometer, from which lessons will be derived and 
expertise gained on diamond detectors in space applications.  

LYRA is also used in the frame of space weather and solar science, providing high temporal cadence data up 
to 20 Hz. Data are available in near-real time (9 passes/24 hours).  

The LYRA instrument was developed by the PMOD/WRC (Ch), Project Management, PA/QA, spacecraft 
interfaces, payload integration and commissioning was under the responsability of Centre Spatial de Liège 
(University of Liège, B) with the PI ship of the Royal Observatory of Belgium (B). The diamond detectors were 
developed by IMOMEC (University of Limburg, B) and support for calibration was provided by the Max 
Planck Institute for Solar System Research (D). Belgian activities are funded by the Belgian Federal Science 
Policy Office (BELSPO), through the ESA/PRODEX program. The Swiss PRODEX programme supported the 
development and construction of the LYRA hardware. 
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