Paper
27 February 2018 Detection of eardrum abnormalities using ensemble deep learning approaches
Author Affiliations +
Abstract
In this study, we proposed an approach to report the condition of the eardrum as “normal” or “abnormal” by ensembling two different deep learning architectures. In the first network (Network 1), we applied transfer learning to the Inception V3 network by using 409 labeled samples. As a second network (Network 2), we designed a convolutional neural network to take advantage of auto-encoders by using additional 673 unlabeled eardrum samples. The individual classification accuracies of the Network 1 and Network 2 were calculated as 84.4%(± 12.1%) and 82.6% (± 11.3%), respectively. Only 32% of the errors of the two networks were the same, making it possible to combine two approaches to achieve better classification accuracy. The proposed ensemble method allows us to achieve robust classification because it has high accuracy (84.4%) with the lowest standard deviation (± 10.3%).
© (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Caglar Senaras, Aaron C. Moberly M.D., Theodoros Teknos M.D., Garth Essig M.D., Charles Elmaraghy M.D., Nazhat Taj-Schaal M.D., Lianbo Yua, and Metin N. Gurcan "Detection of eardrum abnormalities using ensemble deep learning approaches", Proc. SPIE 10575, Medical Imaging 2018: Computer-Aided Diagnosis, 105751A (27 February 2018); https://doi.org/10.1117/12.2293297
Lens.org Logo
CITATIONS
Cited by 13 scholarly publications and 1 patent.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Neural networks

Bragg cells

Convolutional neural networks

Network architectures

Ear

Diagnostics

Machine learning

Back to Top