Translator Disclaimer
Presentation + Paper
27 February 2018 Deep learning in breast cancer risk assessment: evaluation of fine-tuned convolutional neural networks on a clinical dataset of FFDMs
Author Affiliations +
We evaluated the potential of deep learning in the assessment of breast cancer risk using convolutional neural networks (CNNs) fine-tuned on full-field digital mammographic (FFDM) images. This study included 456 clinical FFDM cases from two high-risk datasets: BRCA1/2 gene-mutation carriers (53 cases) and unilateral cancer patients (75 cases), and a low-risk dataset as the control group (328 cases). All FFDM images (12-bit quantization and 100 micron pixel) were acquired with a GE Senographe 2000D system and were retrospectively collected under an IRB-approved, HIPAA-compliant protocol. Regions of interest of 256x256 pixels were selected from the central breast region behind the nipple in the craniocaudal projection. VGG19 pre-trained on the ImageNet dataset was used to classify the images either as high-risk or as low-risk subjects. The last fully-connected layer of pre-trained VGG19 was fine-tuned on FFDM images for breast cancer risk assessment. Performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC) in the task of distinguishing between high-risk and low-risk subjects. AUC values of 0.84 (SE=0.05) and 0.72 (SE=0.06) were obtained in the task of distinguishing between the BRCA1/2 gene-mutation carriers and low-risk women and between unilateral cancer patients and low-risk women, respectively. Deep learning with CNNs appears to be able to extract parenchymal characteristics directly from FFDMs which are relevant to the task of distinguishing between cancer risk populations, and therefore has potential to aid clinicians in assessing mammographic parenchymal patterns for cancer risk assessment.
Conference Presentation
© (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Hui Li, Kayla R. Mendel, John H. Lee, Li Lan, and Maryellen L. Giger "Deep learning in breast cancer risk assessment: evaluation of fine-tuned convolutional neural networks on a clinical dataset of FFDMs", Proc. SPIE 10575, Medical Imaging 2018: Computer-Aided Diagnosis, 105750S (27 February 2018);

Cited by 1 scholarly publication.
Breast cancer

Convolutional neural networks

Medical imaging

Feature extraction

Back to Top