12 March 2018 Automatic segmentation of eyeball structures from micro-CT images based on sparse annotation
Author Affiliations +
Abstract
A surgical simulator with elaborate artificial eyeball models has been developed for ophthalmic surgeries, in which sophisticated skills are required. To create the elaborate eyeball models with microstructures included in an eyeball, a database of eyeball models should be compiled by segmenting eye structures based on high-resolution medical images. Therefore, this paper presents an automated segmentation of eye structures from micro-CT images by using Fully Convolutional Networks (FCNs). In particular, we aim to construct a method for accurately segmenting eye structures from sparse annotation data. This method performs end-to-end segmentation of eye structures, including a workflow from training the FCN based on sparse annotation to obtaining the segmentation of the entire eyeball. We use the FCN trained on the slices sparsely annotated in a micro-CT volume to segment the remaining slices in the same volume. To achieve accurate segmentation from less annotated images, the multi-class segmentation is performed by using the network trained on the preprocessed and augmented micro-CT images; in the preprocessing, we apply filters for removing ring artifacts and random noises to the images, while in the data augmentation process, rotation and elastic deformation operations are performed on the sparsely-annotated training data. From the results of experiments for evaluating segmentation performances based on sparse annotation, we found that the FCN trained with data augmentation could achieve high segmentation accuracy of more than 90% even from a sparse training subset of only 2.5% of all slices.
Conference Presentation
© (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Takaaki Sugino, Holger R. Roth, Masahiro Oda, Seiji Omata, Shinya Sakuma, Fumihito Arai, Kensaku Mori, "Automatic segmentation of eyeball structures from micro-CT images based on sparse annotation", Proc. SPIE 10578, Medical Imaging 2018: Biomedical Applications in Molecular, Structural, and Functional Imaging, 105780V (12 March 2018); doi: 10.1117/12.2293431; https://doi.org/10.1117/12.2293431
PROCEEDINGS
6 PAGES + PRESENTATION

SHARE
Back to Top