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ABSTRACT  

The use of composite materials continues to increase in the aerospace community due to the potential benefits of reduced 
weight, increased strength, and manufacturability.  The ability to characterize damage in carbon fiber reinforced polymer 
composite components is required to facilitate damage progression models capable of yielding accurate remaining life 
predictions.  As these composite structures become larger and more complex, nondestructive evaluation (NDE) 
techniques capable of quantifying and fully characterizing the material state are needed to enable damage progression 
models capable of yielding accurate remaining life predictions.  This paper will present an overview of current NDE 
research activities for quantitative characterization of aerospace composites as well as a discussion of future directions in 
NDE research.   
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1. INTRODUCTION  
In recent years, the aerospace community has increased the use of composites in aeronautic and space vehicles. As 
demonstrated by the Boeing 787’s use of composites[1], NASA’s Composite Crew Module[2] and liquid hydrogen (LH2) 
cryogenic tanks[3], there is a push toward the use of composites for primary structural components.  As these composite 
structures become larger and more complex, nondestructive evaluation (NDE) techniques capable of quantifying and 
fully characterizing damage are needed.  The ability to quantitatively characterize damage in carbon fiber reinforced 
polymer (CFRP) composite components is required to enable damage progression models capable of yielding accurate 
remaining life predictions.  For example, the depth at which delaminations occur is directly related to how damage 
growth progresses[4].  Therefore, a ‘full’ characterization of delamination damage needs to go beyond a quantitative 
measure of the in-plane area (size) of the damage, to include the depth/ply at which the damage occurs.  For multilayered 
delamination damage, a full assessment would ideally include the depth and size of all delaminations, if possible.  A 
‘full’ damage characterization for other damage types may require different damage information.  Microcracking may be 
best characterized by a measure of microcrack density correlated to depth through the material, while fiber waviness 
may require a statistical measure of the affected locations and corresponding ranges in the angle of unintended in-plane 
or out-of-plane alignment/waviness of fibers (i.e., a ‘waviness angle’ range)[5],[6]. 

The challenge of acquiring quantitative NDE damage characterization for aerospace composites is compounded not only 
by the size of the structure and complexity of the damage types occurring in composites, but also by the complex 
geometries of composite components required for aerospace applications.  The research approaches of NASA’s 
Nondestructive Evaluation Sciences Branch (NESB) include investigation of conventional, guided wave and phase 
sensitive ultrasonic methods, infrared thermography and x-ray computed tomography techniques. The use of simulation 
tools for optimizing and developing these methods is an active area of research. This paper will focus on an overview of 
current NDE research activities for quantitative characterization of aerospace composites as well as a discussion of 
future directions in NDE research. 

2. CURRENT INSPECTION TECHNOLOGIES 
2.1 Infrared Flash Thermography 

Flash infrared thermography has been used extensively as a large area rapid inspection technology for composite 
structures. The flash thermography system typically used by NESB is the commercially available Echotherm® system 
from Thermal Wave Imaging, Inc.  The system features a flash hood containing a 1280 x 720 element FLIR A8300sc 
infrared (IR) camera with two 4800-Joule xenon photographic flash tubes.  The hood has dimensions of 36.8 cm wide by 
26.7 cm deep by 40.6 cm tall and is configured such that the IR camera views the inspection surface directly.  The flash 
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against conditions critical to maintaining vehicle integrity.  Game changing technology will be required to produce new 
classes of sensors and NDE methodologies tailored to specific applications.  A combination of fixed global sensor arrays 
along with mobile, autonomous inspection devices will be required for early detection, quantification, localization, and 
mitigation of critical conditions. 

3.1 Robotic Implementation of NDE Inspections 

Autonomous inspection capability will be required to ensure reliable structures/systems.  To date, a majority of the 
autonomous inspection technologies that have been developed have been limited to visual inspections and most of these 
have been applied to the inspection of pipelines[15] or applied to large infrastructure inspections such as in nuclear power 
plants[16].  These systems typically require significant human interaction (either directly or remotely).  However, for a 
fully autonomous inspection, the development technology capable of ensuring that the inspection system is properly 
configured, registered and coupled to the structure is necessary.  Additional needs include systems that are capable of 
automatically adjusting the required resolution to accurately size and identify flaws, all with minimal intervention of an 
operator.  These systems should also be aware of their location on the structure and capable of mapping the results to a 
model of the structure under inspection[17]. Real time flaw inspection data would link to physics–based models of the 
vehicle to interrogate vehicle health and plan required damage mitigation strategies.  This is critical for long duration 
missions where an autonomous inspection system would free mission specialist’s time to enable them to perform other 
functions.  Additionally, it can be coupled to a robotic system to enable inspections without extravehicular activities, 
which would support both manned and unmanned vehicles. 

Current research in NESB is investigating the use of collaborative robots (cobots).  A collaborative robot is a robot 
intended to physically interact with humans in a shared workspace[18].  The use of collaborative robots for NDE is 
attractive for several reasons.  (1) Cobots enable the registration, precision, repeatability and speed that robotics provides 
while eliminating the need for safety exclusion zones or other safety barriers during inspection.   (2) Cobots allows 
robotic NDE to be performed on a structure or vehicle while other work is taking place.  Figure 8 shows two 
photographs of a cobot performing flash thermography on a composite aircraft fuselage structure.  Figure 9 shows the 
results of a flash thermography inspection of the fuselage.  All of the data acquired was registered to its location on the 
fuselage and processed using PCA as described in sections 2.1 and 3.2 of this paper.   

           
Figure 8.  Two photographs of flash infrared thermography inspection performed on a composite aircraft fuselage by a 
cobot. 

                   
Figure 9.  Two 3D views of the processed and registered thermal data from a complete inspection of the composite fuselage. 
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presence of large defects, an alternative method of PCA is being pursued where a fixed set of eigenvectors, generated 
from an analytic model of the thermal response of the material under examination, is used to process the thermal data 
from composite materials.  Either a one-dimensional (1D) multilayer analytic model or a 2D finite element model is used 
and a set of eigenvectors are then numerically generated from this array of responses[7],[8].  Figure 3, discussed earlier, 
shows the results achieved using this model based analysis approach.  In this example, calculation of each PCA image 
(the mosaic of figure 3 contains 10 PCA images) using the model derived eigenvectors took less than 1 second in 
Matlab®, whereas a full SVD calculation of the eigenvectors and back projection on the same data can take more than 1 
minute. 

3.3 In situ Inspection of Composite Manufacturing 

Automated fiber placement (AFP) is the process by which fibers, preimpregnated with resin, are placed layer-by-layer 
using a robotic system to build up the composite laminate. The composite laminate is then cured, usually in an autoclave.  
This process for composite part fabrication by AFP can result in a number of potential flaws, the simplest of which are 
gaps (unintended space between tows), laps (when tows overlap) and twists (when a tow is twisted and a portion of it 
does not lie flat). These AFP flaws are typically found by time intensive visual inspection.  An AFP part might also 
contain flaws that are much more difficult to detect visually such as insufficient adhesion between plies or tow peel-up in 
the presence of complex geometry. Finding flaws and correcting them prior to placing another layer or prior to cure 
saves material and time as correcting flaws post cure is much more complicated.  Infrared thermography[31] and 
microwave imaging[32] are both being investigated for use to characterize these defects during the AFP process 

For example, thermography provides a direct measure of the surface temperature of a part. Additionally, thermography 
provides information about volume under inspection by observing the surface temperature over time in the presence of 
known heating conditions. The AFP process utilizes a heat source to aid with compaction and adherence of the fibers. By 
observing and analyzing the time history of the surface after a new course (or layer of fibers) is applied the part quality 
can be assessed. This type of assessment allows repairs to be made during fabrication, reducing the risk of curing a part 
of unacceptable quality.  Figure 11 shows a photograph of NASA Langley’s AFP system with a close-up of the 
integrated IR camera for in situ inspection during fiber placement.  Figure 12 shows some the individual frames captured 
by the in-situ thermal camera. Figure 12a shows examples of fiber tows that are peeling-up due to the steering angle 
compared to figure 12b that shows tows without the peel-up. The black corresponds to cooler temperatures, the tow peel-
up appear as dark, cool spots where the fiber tows have separated from the hotter substrate. 

 
Figure 11.  Integrated thermal camera on AFP system at NASA Langley. 
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(a)                                                                                        (b) 

Figure 12.  (a) In situ thermal image of tow-steered composite layup showing some fiber tow peel-up.  (b) In situ 
thermal image of tow-steered composite layup showing low peel-up, good adhesion to the substrate. 

4. CONCLUSIONS 
This paper presented a review of ongoing NDE inspection research and simulation tool development within the NASA’s 
NESB at Langley Research Center.  The paper gave an overview of a few of the technologies under development for 
rapid, large-area inspection of complex composite structures.  Examples given show how those technologies are being 
applied to characterize the state of composite structures.  The rapid, quantitative results produced by these technologies 
provide one step in the process of sustainment for large composite structures during a vehicle’s life.  Additionally, a 
discussion of emerging technology areas for NDE were presented, including examples incorporating realistic composite 
damage, model based data analysis for faster, more reliable results and in-process monitoring of composite part 
fabrication.  A number of other techniques being explored by NESB for characterization of composite structures were 
not discussed in this paper.  For example, current research includes the use of fiber optic, wireless surface acoustic wave 
and acoustic emission sensors for structural health monitoring (SHM) of large composite components, eddy current 
inspection of high temperature ceramic composites as well as terahertz and microwave inspection of non-conducting 
composite materials.  Finally, NESB is investigating how data from multiple NDE and/or SHM techniques applied to the 
same structure can be combined to provide a fuller understanding of the overall health of component under inspection. 
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