27 March 2018 Turbofan engine performance study under simulated failure and non-traditional flight conditions
Author Affiliations +
Engine technology advancements is continuing to be on the rise, manufacturers involved in the development and the making of these engines are continuously striving to improve engines operational capabilities, fuel efficiency and durability. Altitude and Mach number delineate the operational set points for the engine. The core aim of these efforts is to enable production of adequate thrust to allow safe and stable maneuver of operation. The performance requirements of the engine are dependent on the mission profile and its characteristics. Increasing the efficiency and minimizing operative cost by reducing fuel consumption is an important factor for a successful turbofan engine. This leads to the fact that any decrease in the percent of fuel consumption will render a significant saving of running costs over the life of the engine. Further, with equally slight increase in the efficiency, the operational life of the engine will improve tremendously. The work being presented in this paper is focused on acquiring data such as thrust, speed; altitude etc… generated from a turbofan engine simulator “DGEN 380” which resembled an actual engine in operation. Conditions such as specified components unexpected failures under a quantified flight path are being investigated to assess the performance of the engine in such operational circumstances. Results pertaining to failure diagnosis based on the engine response obtained from the virtual test bench are presented and discussed.
Conference Presentation
© (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Ali Abdul-Aziz, Ali Abdul-Aziz, Robert D. Bissler, Robert D. Bissler, D. Blake Stringer, D. Blake Stringer, "Turbofan engine performance study under simulated failure and non-traditional flight conditions", Proc. SPIE 10601, Smart Materials and Nondestructive Evaluation for Energy Systems IV, 1060106 (27 March 2018); doi: 10.1117/12.2297144; https://doi.org/10.1117/12.2297144

Back to Top