15 November 2017 Performance evaluation of sea surface simulation methods for target detection
Author Affiliations +
Proceedings Volume 10605, LIDAR Imaging Detection and Target Recognition 2017; 1060516 (2017) https://doi.org/10.1117/12.2286830
Event: LIDAR Imaging Detection and Target Recognition 2017, 2017, Changchun, China
Abstract
With the fast development of sea surface target detection by optoelectronic sensors, machine learning has been adopted to improve the detection performance. Many features can be learned from training images by machines automatically. However, field images of sea surface target are not sufficient as training data. 3D scene simulation is a promising method to address this problem. For ocean scene simulation, sea surface height field generation is the key point to achieve high fidelity. In this paper, two spectra-based height field generation methods are evaluated. Comparison between the linear superposition and linear filter method is made quantitatively with a statistical model. 3D ocean scene simulating results show the different features between the methods, which can give reference for synthesizing sea surface target images with different ocean conditions.
© (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Renjie Xia, Xin Wu, Chen Yang, Yiping Han, Jianqi Zhang, "Performance evaluation of sea surface simulation methods for target detection", Proc. SPIE 10605, LIDAR Imaging Detection and Target Recognition 2017, 1060516 (15 November 2017); doi: 10.1117/12.2286830; https://doi.org/10.1117/12.2286830
PROCEEDINGS
19 PAGES


SHARE
RELATED CONTENT


Back to Top