Paper
16 May 2018 Enhanced whispering gallery mode sensors
Author Affiliations +
Abstract
Optical whispering gallery mode (WGM) biochemical sensors operate by tracking changes in resonant frequency as materials enter the evanescent near-field of the resonator. To achieve the smallest limit of detection, it is desirable for WGM sensors to exhibit as large a frequency shift as possible for a material of a given size and refractive index, as well as the ability to track as small a frequency shift as possible. Previously, plasmonic nanoantennas have been coupled to WGM resonators to increase the magnitude of resonance shifts via plasmonic enhancement of the electric field, however this approach also results in increased scattering from the WGM, which degrades its quality factor, making it less sensitive to extremely small frequency shifts. This degradation is caused by the ohmic and scattering dissipation caused by metallic nanoantennas. Using simulations, we show here that the precise positioning of nanoantennas coupled to a microtoroid WGM resonator can be used to overcome this drawback and achieve ultrahigh-Q plasmonic cavity modes simultaneously with electric field enhancement. It is shown that a nanoantenna composed of two similarly coupled nanorods supports higher Q modes than a single nanorod antenna. Our results have immediate application in the context of optical sensing.
© (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Cheng Li, M. H. Teimourpour, Euan McLeod, and Judith Su "Enhanced whispering gallery mode sensors", Proc. SPIE 10629, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIX, 106290Q (16 May 2018); https://doi.org/10.1117/12.2304556
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Nanorods

Nanoantennas

Plasmonics

Gold

Sensors

Systems modeling

Optical resonators

Back to Top