You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
14 May 2018Stitching image using RDHW based on multivariate student's t-distribution (Conference Presentation)
In order to create a seamless and seemingly natural panorama, we propose a novel stitching method when a panoramic scene contain two predominate planes. Firstly, compute each homography of per planes. Then, how to set the each of weight in dual-homography become an important step. The traditional method of setting weights is to directly calculate European distance between original image location pixel points and feature points. The disadvantage is the weights of singular points seriously impact the overall decision. In this paper, we proposed a static probability model of error matching to optimize weights by multivariate student’s t distribution. No only error matching probability, but also error amount and distance of feature points are all considered in the weight model. Finally, a renewal single homography is defined by establishing contact between dual-homography and weights. Experiments show the homography matrix is more robust and accurate to perform a nonlinear warping. The proposed method is easily generalized to multiple images, and allows one to automatically obtain the best perspective in the panorama.
Yingying Kong,Yingying Chen, andLeung Henry
"Stitching image using RDHW based on multivariate student's t-distribution (Conference Presentation)", Proc. SPIE 10642, Degraded Environments: Sensing, Processing, and Display 2018, 106420W (14 May 2018); https://doi.org/10.1117/12.2301394