27 April 2018 Data fusion for sociocultural place understanding using deep learning
Author Affiliations +
Abstract
To be effective in complex operations, the U.S. military requires understanding about populations in the physical and information environments. Operations executed without sufficient understanding lead to unintended consequences with potentially far-reaching implications. We present Apropos, a platform that aims to improve mission outcomes through socioculturally informed course of action analyses. Apropos uses deep learning over multiple data modalities to efficiently derive information on operational and civil factors. Research efforts focus on deep learning approaches and model fusion techniques centered around knowledge graph embeddings enabling semantic search, predictive surfaces, and other analytics (e.g. route planning and site selection).
Conference Presentation
© (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jake Popham, Jake Popham, Micheal Forkin, Micheal Forkin, Nicholas Hamblet, Nicholas Hamblet, Bryce Inouye, Bryce Inouye, "Data fusion for sociocultural place understanding using deep learning", Proc. SPIE 10653, Next-Generation Analyst VI, 106530E (27 April 2018); doi: 10.1117/12.2306881; https://doi.org/10.1117/12.2306881
PROCEEDINGS
18 PAGES + PRESENTATION

SHARE
RELATED CONTENT


Back to Top