Front Matter: Volume 10654

Event: SPIE Commercial + Scientific Sensing and Imaging, 2018, Orlando, FL, United States
The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

ISSN: 0277-786X
ISSN: 1996-756X (electronic)

ISBN: 9781510618190

Published by SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445
SPIE.org
Copyright © 2018, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/18/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIE. DIGITAL LIBRARY
SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B … 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.
Contents

<table>
<thead>
<tr>
<th>SESSION 1</th>
<th>FIBER OPTIC SENSING FOR ELECTRIC POWER SYSTEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10654 02</td>
<td>Fiber optic current and voltage sensors for electric power transmission systems (Invited Paper) [10654-1]</td>
</tr>
<tr>
<td>10654 03</td>
<td>Fiber optic sensors and applications in the power generation industry (Invited Paper) [10654-2]</td>
</tr>
<tr>
<td>10654 04</td>
<td>Optical sensors technologies evolution applied for power quality monitoring in the medium-voltage [10654-3]</td>
</tr>
<tr>
<td>10654 05</td>
<td>Low-cost fiber optic sensor array for simultaneous detection of hydrogen and temperature [10654-4]</td>
</tr>
<tr>
<td>10654 06</td>
<td>Merits of a hybrid fluorescent fiber sensor and power over fiber partial discharge detection solution [10654-5]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 2</th>
<th>FIBER BRAGG GRATING SENSORS I</th>
</tr>
</thead>
<tbody>
<tr>
<td>10654 07</td>
<td>Multipoint high temperature sensing with regenerated fiber Bragg gratings (Invited Paper) [10654-6]</td>
</tr>
<tr>
<td>10654 08</td>
<td>High temperature measurement of a low emission, high pressure combustor using femtosecond laser written fiber Bragg gratings [10654-7]</td>
</tr>
<tr>
<td>10654 09</td>
<td>Packaged FBG based optical fiber sensor for simultaneous pressure and temperature monitoring [10654-8]</td>
</tr>
<tr>
<td>10654 0A</td>
<td>Secondary Bragg grating based fiber sensors for the application in high temperature environment [10654-9]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 3</th>
<th>DISTRIBUTED FIBER OPTIC SENSING I</th>
</tr>
</thead>
<tbody>
<tr>
<td>10654 0B</td>
<td>Stable dynamic phase demodulation in a DAS based on double-pulse Φ-OTDR using homodyne demodulation and direct detection [10654-10]</td>
</tr>
</tbody>
</table>
Field tests of a distributed acoustic sensing system based on temporal adaptive matched filtering of phase-sensitive OTDR signals [10654-11]

Field test and fading measurement of a distributed acoustic sensor system over a 50 km-long fiber [10654-12]

Optical fibers for distributed sensing in harsh environments [10654-13]

SESSION 4 NEW AVENUES IN FIBER OPTIC SENSING

Multiplexed fiber-coupled accelerometers for security monitoring applications (Invited Paper) [10654-14]

Fiber optic sensors: technical trends from the mid-1970s to the present (Invited Paper) [10654-15]

A novel multi-mode fiber optic accelerometer: an intelligent sensor [10654-17]

SESSION 5 APPLICATIONS OF FIBER OPTIC SENSORS FOR HARSH ENVIRONMENTS

Fiber optic sensors for harsh environment sensing: case studies on environmental sensing (Invited Paper) [10654-21]

Single-crystal fiber structures for harsh environment applications (Rising Researcher Presentation) [10654-22]

Nanosecond resolution pressure, temperature, position, and velocity measurements in energetic materials [10654-24]

SESSION 6 FIBER BRAGG GRATING SENSORS II

Development of fiber Bragg grating pH sensors for harsh environments [10654-25]

Enhanced sensing and accessing capabilities of an FBG sensor using fiber loop mirror [10654-27]

Ultrafast pressure measurement in shock wave research using fiber Bragg grating sensors [10654-28]

SESSION 7 SPECIALTY FIBERS FOR SENSING APPLICATIONS

Characterization of ultrasonic generation from a fiber-optic sidewall [10654-30]
SESSION 8 DISTRIBUTED FIBER OPTIC SENSING II

<table>
<thead>
<tr>
<th>Session Number</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10654 Y</td>
<td>Simultaneous distributed temperature and disturbance sensing in single-mode fibre for power cable monitoring</td>
<td>[10654-34]</td>
</tr>
<tr>
<td>10654 10</td>
<td>Sensitivity analysis of OFDR-based distributed sensing for flaws detection in representative coupon from filament wound motor vessel</td>
<td>[10654-36]</td>
</tr>
<tr>
<td>10654 12</td>
<td>Long distance, high spatial resolution distributed temperature measurement using a graded index optical fiber at 1550 nm</td>
<td>[10654-38]</td>
</tr>
</tbody>
</table>

POSTER SESSION

<table>
<thead>
<tr>
<th>Session Number</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10654 13</td>
<td>Intracavity absorption gas sensor in the near-infrared region by using a tunable erbium-doped fiber laser based on a Hi-Bi FOLM</td>
<td>[10654-40]</td>
</tr>
<tr>
<td>10654 14</td>
<td>A power over fiber voltage and current sensor using multiplexed PWM signals</td>
<td>[10654-41]</td>
</tr>
<tr>
<td>10654 15</td>
<td>Standard optical fibers for load measuring of concrete structures using BOTDR</td>
<td>[10654-42]</td>
</tr>
<tr>
<td>10654 16</td>
<td>FBG strain sensor mounted on plastic carrier</td>
<td>[10654-43]</td>
</tr>
<tr>
<td>10654 17</td>
<td>Temperature sensor with using of optical fibers</td>
<td>[10654-44]</td>
</tr>
<tr>
<td>10654 18</td>
<td>Alternative fiber detector of vibrations</td>
<td>[10654-45]</td>
</tr>
<tr>
<td>10654 19</td>
<td>Detection of magnetic field with use of optical sensors</td>
<td>[10654-46]</td>
</tr>
<tr>
<td>10654 1C</td>
<td>Fiber-optic Bragg grating sensors signal processing for vital signs monitoring</td>
<td>[10654-49]</td>
</tr>
<tr>
<td>10654 1D</td>
<td>Advanced methods for fiber-optic sensor signal processing</td>
<td>[10654-50]</td>
</tr>
<tr>
<td>10654 1E</td>
<td>Pre-processing and extraction techniques for vital signs analysis from phonocardiographic-based interferometric fiber-optic sensor</td>
<td>[10654-51]</td>
</tr>
<tr>
<td>10654 1F</td>
<td>Analysis of encapsulation the fiber Bragg sensors for biomedical applications</td>
<td>[10654-52]</td>
</tr>
<tr>
<td>10654 1G</td>
<td>Sensor system based on the Mach-Zehnder interferometer for the rail transport</td>
<td>[10654-53]</td>
</tr>
</tbody>
</table>
Analysis of the attenuation characteristics of cylindrical waveguides made from the polydimethylsiloxane (PDMS) polymer [10654-54]

Analysis of transmission properties of optical couplers made from the polydimethylsiloxane (PDMS) [10654-55]

The detection and characterization of weak seismic waves using optical fiber Bragg grating sensor [10654-57]

Second generation fs-laser-written fiber Bragg gratings for high accuracy temperature measurement in harsh environments [10654-39]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Ahad, Mohammad A., 0W
Ahmed, Ashfaq, 0W
Ahmadi, Hamid, 0M, 0P
Álvarez-Tamayo, R., 13
Alieh, Ahmad, 0R
Alemohammad, Hamid, 0M, 0P
Amin, Amir, 0Y
Barbosa, Cezar, 0W
Barcelata-Pinzón, A., 13
Bassan, Fabio Renato, 04, 14
Baxley, John, 0F
Bedard, Kyle, 12
Berghmans, Francis, 09
Berkovic, G., 0S
Bohnert, Klaus, 02
Bookey, Henry T., 0Y
Braganza, David, 12
Buck, Elaine, 0Y
Bueno Martinez, Antonio, 09
Bujdos, David, 18
Buric, M., 0N
Carr, Dustin W., 0F
Castillo-Guzmán, A. A., 13
Caucheteur, Christophe, 09
Chan, Brian N., 0P
Charest, Nicholas, 0B
Chorpening, B., 0N
Ciminello, M., 10
Concilio, A., 10
Cubik, Jakub, 18, 1E
Czejn, Daniel, 17, 19
da Costa, Eduardo Ferreira, 04
Dachraoui, Hatem, 1L
Daerden, Eric, 09
De Silva, Manly, 0B
Delavaux, Jean-Marc, 0V
Di Pasquale, Fabrizio, 0B
Diatzikis, Evangelos V., 03
Dini, Danilo Cesar, 04
Duong, 0U
Durán-Sánchez, M., 13
Dutz, Franz J., 07
Ervin, Allen, 1K
Fabbri, G., 10
Fajkus, Marcel, 15, 16, 17, 1C, 1D, 1E, 1F, 1G, 1H
Faralli, Stefano, 0B
Fedotov Gefen, A., 0S
Feng, Fu-Rong, 0A
Ferguson, Steve, 0F
Fiehr, Roman, 1L
Florida, Claudio, 04
Frank, Andreas, 02
Gabus, Philippe, 02
Galasso, B., 10
Geernaert, Thomas, 09
Gillon, O., 0S
Gong, Xin, 1L
Gu, Xun, 02
Guo, Xu, 0U
Heinrich, Andreas, 07
Hejduk, Stanislav, 1G, 1I
Hines, Mike, 12
Hnatovsky, Cyril, 08
Huang, Ji-Ying, 09
Huang, Lei, 0E
Jalal, Ahmed Habes, 0W
Jargus, Jan, 15, 16, 17, 18, 19, 1C, 1D, 1E, 1F, 1G, 1H
Jin, Long, 0A
Kahankova, Radana, 1C, 1D, 1E
Kamping, Margarethe, 1L
Kartaloglu, Tolga, 0D
Kepak, Stanislav, 19, 1E
Koch, Alexander W., 07
Lenner, Miklos, 02
LI, Jie, 0E, 12
Li, Richard, 0M, 0P
Lindner, Eric, 09
Lindner, Markus, 07
Liu, B., 0N
Lu, Ping, 0S
Lu, Ping, 08
Marchese, Sergio V., 02
Marques, Felipe Lima dos Reis, 04
Martinek, Radek, 15, 16, 17, 18, 19, 1C, 1D, 1E, 1F, 1G, 1H, 1I
Mataloni, A., 10
Mathers, Kiara E., 0P
Mec, Pavel, 15, 16, 1G, 1H, 1I
Mihalov, Stephen J., 08
Mostafavi, M. Taghi, 0I
Muanenda, Yonas, 0B
Müller, Georg M., 02
Nedoma, Jan, 15, 16, 1C, 1D, 1E, 1F, 1G
Novak, Martin, 17, 18, 19, 1C, 1D, 1E, 1H, 1I

Proc. of SPIE Vol. 10654 1065401-7
Conference Committee

Symposium Chair

Robert Fiete, Harris Corporation (United States)

Symposium Co-chair

Jay Kumler, JENOPTIK Optical Systems, LLC (United States)

Conference Chairs

Alexis Mendez, MCH Engineering LLC (United States)
Christopher S. Baldwin, Weatherford International Ltd. (United States)
Henry H. Du, Stevens Institute of Technology (United States)

Conference Co-chairs

Eric Udd, Columbia Gorge Research (United States)
Gary Pickrell, Virginia Tech (United States)
Anbo Wang, Virginia Polytechnic Institute and State University (United States)

Conference Program Committee

Ole Bang, Technical University of Denmark (Denmark)
Kevin Peng Chen, University of Pittsburgh (United States)
Geoffrey A. Cranch, U.S. Naval Research Laboratory (United States)
Sachin Dekate, GE Global Research (United States)
Abdessama Elyamani, Northrop Grumman Navigation Systems (United States)
Xudong Fan, University of Michigan (United States)
Yoel Fink, Massachusetts Institute of Technology (United States)
Todd C. Haber, Micron Optics, Inc. (United States)
Ming Han, University of Nebraska-Lincoln (United States)
Hajime Haneda, National Institute for Materials Science (Japan)
Daniel Homa, Virginia Polytechnic Institute and State University (United States)
Jiri Kanka, Institute of Photonics and Electronics of the ASCR, v.v.i. (Czech Republic)
Gurbinder Kaur, Thapar University (India)
Victor I. Kopp, Chiral Photonics, Inc. (United States)
Katerina Krebber, Bundesanstalt für Materialforschung und -prüfung (Germany)
Stephen T. Kreger, Luna Innovations Inc. (United States)
Session Chairs

1 Fiber Optic Sensing for Electric Power Systems
 Alexis Mendez, MCH Engineering LLC (United States)
 Eric Udd, Columbia Gorge Research LLC (United States)

2 Fiber Bragg Grating Sensors I
 Christopher S Baldwin, Weatherford International Ltd. (United States)
 Evangelos V. Diatzikis, Siemens Power Generation, Inc. (United States)

3 Distributed Fiber Optic Sensing I
 Hamid Alehakhamad, AOMS Technologies Inc. (Canada)
 Ingrid Scheel, Columbia Gorge Research LLC (United States)

4 New Avenues in Fiber Optic Sensing
 Fei Tian, Stevens Institute of Technology (United States)
 Gary Pickrell, Virginia Tech (United States)

5 Applications of Fiber Optic Sensors for Harsh Environments
 Christopher S Baldwin, Weatherford International Ltd. (United States)
 Alexis Mendez, MCH Engineering LLC (United States)
6 Fiber Bragg Grating Sensors II
Eric Udd, Columbia Gorge Research LLC (United States)
Hwa-Yaw Tam, The Hong Kong Polytechnic University
(Hong Kong, China)

7 Specialty Fibers for Sensing Applications
Henry Du, Stevens Institute of Technology (United States)
Jie Li, OFS (United States)

8 Distributed Fiber Optic Sensing II
Ingerid Scheel, Columbia Gorge Research LLC (United States)
Dilora Yilman, AOMS Technologies Inc. (United States)