You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
15 May 2018Additive manufacturing of lightweight mirrors (Conference Presentation)
Additive manufacturing offers new routes to lightweight optics inaccessible by conventional methods by providing a broader range of reconciled functionality, form factor, and cost. Predictive lattice design combined with the ability to 3D print complex structures allows for the creation of low-density metamaterials with high global and local stiffness and tunable response to static and dynamic loading. This capacity provides a path to fabrication of lightweight optical supports with tuned geometries and mechanical properties. Our approach involves the simulation and optimization of lightweight lattices for anticipated stresses due to polishing and mounting loads via adaptive mesh refinement. The designed lattices are 3D printed using large area projection microstereolithography (LAPuSL), coated with a metallic plating to improve mechanical properties, and bonded to a thin (1.25 mm) fused silica substrate. We demonstrate that this lightweight assembly can be polished to a desired flatness using convergent polishing, and subsequently treated with a reflective coating.
*This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 within the LDRD program. LLNL-ABS-738806.
The alert did not successfully save. Please try again later.
Nikola Dudukovic, Wen Chen, Bryan Moran, William Steele, Eric Duoss, Christopher Spadaccini, Tayyab Suratwala, Rebecca Dylla-Spears, "Additive manufacturing of lightweight mirrors (Conference Presentation)," Proc. SPIE 10667, Dimensional Optical Metrology and Inspection for Practical Applications VII, 106670N (15 May 2018); https://doi.org/10.1117/12.2303888