You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
6 July 2018Planning operations in Jupiter's high-radiation environment: optimization strategies from Juno-UVS
The Juno Ultraviolet Spectrograph (Juno-UVS) is a remote-sensing science instrument onboard the Juno spacecraft that has been in polar orbit around Jupiter since July 2016. Juno-UVS measures photon events in the ultraviolet from about 68 to 210 nm. It is primarily used to observe emission from the Jovian aurorae, but is also sensitive to other sources such as UV-bright stars, sky background Lyman-alpha emission, and reflected sunlight. However, Juno-UVS is also sensitive to the effects of penetrating high-energy radiation, which results in elevated count rates as measured by the instrument detector array. This radiation presents a challenge for efficiently planning the acquisition of mission science data, as data volume is a valuable (and finite) resource that can quickly be filled when the spacecraft periodically passes through regions of high radiation. This background radiation has been found to vary significantly on both short (spacecraft spin-modulated) time scales, as well as longer timescales from minutes to hours during each close approach to Jupiter. This variability has required a multi-pronged approach in the operation planning of hardware (such as dynamic instrument voltage adjustment) as well as onboard software (such as utilizing data quality factors for the selective storage of science data). We present an overview of these current mitigation/optimization techniques and planning strategies used for this instrument, which will likely also be useful for the development and operations of future instruments within high radiation space environments (e.g., the ESA JUICE mission or NASA’s Europa Clipper).
The alert did not successfully save. Please try again later.
Joshua A. Kammer, Vincent Hue, Thomas K. Greathouse, G. Randall Gladstone, Michael W. Davis, Maarten H. Versteeg, "Planning operations in Jupiter's high-radiation environment: optimization strategies from Juno-UVS," Proc. SPIE 10699, Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, 106993A (6 July 2018); https://doi.org/10.1117/12.2312261