You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
9 July 2018Augmented design for a fully automated alignment system at the Magdalena Ridge Observatory Interferometer
Stable beam alignment of an optical interferometer is crucial for maintaining a usable signal-to-noise ratio during science measurements on faint astronomical targets. The Magdalena Ridge Observatory Interferometer will use an Automated Alignment System (AAS) that performs a start-of-night alignment procedure and subsequent alignment corrections in between observations, all without the need for human intervention. Its design has recently been updated in line with a revised error budget for MROI requiring that two axis drifts during science operations should not exceed 15 milliarcseconds in tilt, referred to the sky, nor 1% of the beam diameter in shear. For each beam line, the AAS provides two reference light beams, a pair of quad cells to monitor coarse alignment, and a tilt and shear detector for tracking fine drifts. The tilt and shear detector is a novel application of a Shack-Hartmann array that permits the simultaneous measurement tilt and shear well within requirements for MROI. Results of laboratory testing and simulations are presented here.
The alert did not successfully save. Please try again later.
James J. D. Luis, Robert Blasi, David F. Buscher, Allen Farris, Robert Kelly, Robert Ligon, "Augmented design for a fully automated alignment system at the Magdalena Ridge Observatory Interferometer," Proc. SPIE 10701, Optical and Infrared Interferometry and Imaging VI, 107010M (9 July 2018); https://doi.org/10.1117/12.2312549