You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
10 July 2018Performance analysis tools and results for GMT primary mirror segment active support system
The Giant Magellan Telescope (GMT) M1 Subsystem includes the seven 8.4 meter M1 (Primary) Segment Mirrors and the steel mirror cell weldments which house the mirror active support and thermal control systems. The segmented nature of the primary mirror and the requirement that each of the six off-axis segment cells be interchangeable impose requirements on the range of motion and control beyond those applicable to the M1 subsystems on 6.5m and 8.4m telescopes using the structured honeycomb mirrors.The subsystem is both technically challenging to design and costly to produce. The M1 Subsystem is allocated a large fraction of the GMT natural seeing image quality budget. Support actuator tolerances, range of motion, accuracy, and precision, as well as the ability of the thermal control system to regulate the primary mirror temperature, all have a significant effect on the image quality. The authors have developed several linear models to estimate the effect of force and moment errors at the M1 Segment Active Supports and the non-uniformity of temperature across M1 segments on the delivered image quality. These results are coupled to the Wavefront Control Subsystem model and are integrated into the GMT system-level simulations to produce a final image quality budget and to quantify the effectiveness of the Wavefront Control Subsystem to compensate for M1 Subsystem error. In this paper, we present the modeling process and preliminary performance results obtained using the models.
The alert did not successfully save. Please try again later.
Trupti Ranka, Dave Ashby, Rodolphe Conan, Mark Egan, Dave Schwartz, "Performance analysis tools and results for GMT primary mirror segment active support system," Proc. SPIE 10705, Modeling, Systems Engineering, and Project Management for Astronomy VIII, 1070512 (10 July 2018); https://doi.org/10.1117/12.2314113