26 April 2018 The Riemannian geometry is not sufficient for the geometrization of the Maxwell’s equations
Author Affiliations +
Abstract
The transformation optics uses geometrized Maxwell’s constitutive equations to solve the inverse problem of optics, namely to solve the problem of finding the parameters of the medium along the paths of propagation of the electromagnetic field. For the geometrization of Maxwell’s constitutive equations, the quadratic Riemannian geometry is usually used. This is due to the use of the approaches of the general relativity. However, there arises the question of the insufficiency of the Riemannian structure for describing the constitutive tensor of the Maxwell’s equations. The authors analyze the structure of the constitutive tensor and correlate it with the structure of the metric tensor of Riemannian geometry. It is concluded that the use of the quadratic metric for the geometrization of Maxwell’s equations is insufficient, since the number of components of the metric tensor is less than the number of components of the constitutive tensor. A possible solution to this problem may be a transition to Finslerian geometry, in particular, the use of the Berwald-Moor metric to establish the structural correspondence between the field tensors of the electromagnetic field.
© (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Dmitry S. Kulyabov, Dmitry S. Kulyabov, Anna V. Korolkova, Anna V. Korolkova, Tatyana R. Velieva, Tatyana R. Velieva, } "The Riemannian geometry is not sufficient for the geometrization of the Maxwell’s equations", Proc. SPIE 10717, Saratov Fall Meeting 2017: Laser Physics and Photonics XVIII; and Computational Biophysics and Analysis of Biomedical Data IV, 1071713 (26 April 2018); doi: 10.1117/12.2315204; https://doi.org/10.1117/12.2315204
PROCEEDINGS
6 PAGES


SHARE
Back to Top