Targeted, sequential deposition of metals using localized surface plasmon resonance (LSPR) is a promising fabrication route for solar fuel catalysts and sensors. This work examines liquid-phase, reductive photodeposition of platinum (Pt) nanoparticles onto the longitudinal ends of gold nanorods (AuNR) under surface plasmon excitation. Reductive Pt nucleation is initiated by plasmonic hot electrons at the Au-liquid interface, whose sites are governed by the plasmon polarity. In this work, in situ spectroscopic monitoring of the photodeposition process permitted real-time feedback into AuNR surface functionalization with the Pt precursor, Pt growth kinetics under monochromatic AuNR LSPR excitation, and their evolving light-matter interactions. Energy dispersive spectroscopy (EDS) mappings show Pt deposition was localized toward the AuNR ends. Coordinated X-ray photoelectron spectroscopy (XPS) measurements with density functional theory (DFT) calculations of the Pt-decorated AuNR density of states (DOS) elucidated optoelectronic behavior. Catalytic photodeposition using plasmonic hot electrons provide an economical path towards targeted, hierarchal assembly of multi-metallic nanoarchitectures at ambient conditions with specified optoelectronic activity.
The alert did not successfully save. Please try again later.
Gregory T. Forcherio, David R. Baker, Jonathan Boltersdorf, Joshua P. McClure, Asher C. Leff, Cynthia A Lundgren, "Directed assembly of bimetallic nanoarchitectures by interfacial photocatalysis with plasmonic hot electrons," Proc. SPIE 10720, Nanophotonic Materials XV, 107200K (19 September 2018);