You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
7 September 2018Saliency and density enhanced region-of-interest extraction for large-scale high-resolution remote sensing images
The region of interest (ROI) extraction is of crucial importance in the preprocessing of object detection, especially when the spatial resolution of the remote sensing image becomes extremely high and the field of view becomes relatively large. To conduct the detection approaches directly on the image usually yields unsatisfactory result, and is time consuming. Saliency models based on visual attention mechanism are the general solution to this problem. However, the conventional saliency models deal with the pixel intensity, color statistics or contrast, while neglect the characteristics and spatial distribution of the ROI, which would results in the false alarm in the extraction. In this paper, taken residential area as the region of interest, a ROI extraction method based on saliency, and enhanced by corner density is proposed. The saliency model is adopted to extract the potential area preliminarily. In spite of the efficiency of the model, it suffers from certain defect, that is, the preliminary extracted region contains plenty of false alarms due to the high contrast of bare land and water reflection. Therefore, corner density feature is constructed to refine the extraction, based on the idea of residential area showing higher edge and corner density compared to rural area. In the experimental part, the proposed method is compared with three saliency models. The experimental results reveal that the proposed method is effective in eliminating the false alarm caused by high intensity or contrast of the pixel.
The alert did not successfully save. Please try again later.
Tong Li, Junping Zhang, Qingle Guo, Bin Zou, "Saliency and density enhanced region-of-interest extraction for large-scale high-resolution remote sensing images," Proc. SPIE 10764, Earth Observing Systems XXIII, 107641X (7 September 2018); https://doi.org/10.1117/12.2324615