You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
6 August 2018Integrated remote sensing for urban forest changes monitoring
Dan M. Savastru,1 Maria A. Zoran,1 Roxana S. Savastru,1 Ionel R. Popa2
1National Institute of Research and Development for Optoelectronics (Romania) 2National Research and Development Institute in Forestry Marin Dracea (Romania)
Drivers of global climate change and the increased frequency of extreme climate events may affect urban and periurban forest ecosystems more rapidly than natural forest ecosystems. Multi stressors of urban forest ecosystems include alterations in forest soils and to the diversity and composition of forest ecosystem, as well as higher temperatures during heat waves periods and increasing carbon dioxide content due to high traffic issue. Global conservation targets and management practices of urban forest ecosystems in Romania requires adequate novel monitoring methodology for monitoring the dynamics changing status. Ground-based measurements are valuable tools with limited spatial footprints. Multispectral and multitemporal satellite remote sensing data allow detailed information on forest structure and can deliver ecologically relevant, long-term datasets suitable of vegetation phenology for analyzing changes in periurban and urban forest ecosystem areas, structure and function at temporal and spatial scales relevant to forest dynamics monitoring. The aim of this paper was to evaluate and characterize forest changes for selected test area Cernica –Branesti in Ilfov county located in the Eastern part of Bucharest metropolitan region, Romania, where the climate and anthropogenic stressors endanger natural and economical values of forest environment. Based on time-series Landsat 5 TM, 7 ETM+, 8 OLI/TIRS, MODIS Terra/Aqua and Sentinel 2A satellite data have been investigated urban forest land cover and forest biophysical parameters (LST, NDVI/EVI and LAI) changes over 2000-2016 period of time. Accuracy of image processing results (spectral classification) was confirmed through in-situ spectroradiometrical analysis of reflectance spectra with portable GER 2600 spectroradiometer.
The alert did not successfully save. Please try again later.
Dan M. Savastru, Maria A. Zoran, Roxana S. Savastru, Ionel R. Popa, "Integrated remote sensing for urban forest changes monitoring," Proc. SPIE 10773, Sixth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2018), 107730O (6 August 2018); https://doi.org/10.1117/12.2324960