You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
24 October 2018Evaluation of the validation of TRMM data over the region of Qilianshan mountain in Northwest China
The Qilianshan Mountain area is very important for water resources and ecosystem safety of the Northwest China and Qinghai-Tibet Plateau. Satellite remote sensing is the best way to estimate precipitation over this region in the future due to the complex terrain and sparse of ground weather stations. The primary goal of this research is to evaluate the Tropical Rainfall Measuring Mission (TRMM) 3B43 rainfall products during 2008 ~ 2017 over the region, by using the gridded precipitation data and routine ground-based observation data from National Meteorological Information Center (NMIC) of China, combining with the Land Use and Land Cover (LULC, MCD12Q1) and topographic data (SRTM). Results show that accuracy of TRMM precipitation has changed a lot except in winter (arid season). Correlation coefficient of TRMM precipitation against the ground-based observations varies from 0.33 to 0.67, indicating that TRMM product is applicable over the Qilianshan mountain area. Seasonal variation of the relative error is mainly in the northeast and southwest areas. The TRMM rain products are greatly affected by topography, and its overestimations are basically distributed in the valley or trough areas. According to analysis of the land use classification, accuracy of the TRMM precipitation is obviously impacted by the sparse vegetation, evergreen broad-leaved forest and city area.
The alert did not successfully save. Please try again later.
Wu Zhang, Chenyi Yang, Qingyun Zhao, Yueqian Cao, "Evaluation of the validation of TRMM data over the region of Qilianshan mountain in Northwest China," Proc. SPIE 10776, Remote Sensing of the Atmosphere, Clouds, and Precipitation VII, 107760T (24 October 2018); https://doi.org/10.1117/12.2324651