You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
9 October 2018Autoencoder versus pre-trained CNN networks: deep-features applied to accelerate computationally expensive object detection in real-time video streams
Traditional event detection from video frames are based on a batch or offline based algorithms: it is assumed that a single event is present within each video, and videos are processed, typically via a pre-processing algorithm which requires enormous amounts of computation and takes lots of CPU time to complete the task. While this can be suitable for tasks which have specified training and testing phases where time is not critical, it is entirely unacceptable for some real-world applications which require a prompt, real-time event interpretation on time. With the recent success of using multiple models for learning features such as generative adversarial autoencoder (GANS), we propose a two-model approach for real-time detection. Like GANs which learns the generative model of the dataset and further optimizes by using the discriminator which learn per sample difference between generated images. The proposed architecture uses a pre-trained model with a large dataset which is used to boost weekly labeled instances in parallel with deep-layers for the small aerial targets with a fraction of the computation time for training and detection with high accuracy. We emphasize previous work on unsupervised learning due to overheads in training labeled data in the sensor domain.
The alert did not successfully save. Please try again later.
Vasanth Iyer, Alexander Aved, Todd B. Howlett, Jeffrey T. Carlo, Bernard Abayowa, "Autoencoder versus pre-trained CNN networks: deep-features applied to accelerate computationally expensive object detection in real-time video streams," Proc. SPIE 10794, Target and Background Signatures IV, 107940Y (9 October 2018); https://doi.org/10.1117/12.2326848