You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
8 November 2018High-precision 3D shape measurement based on time-resolved VCSEL
High-speed and high-precision human face 3D shape measurement plays a very important role in diverse applications such as human-computer interaction, 3D face recognition, Virtual Reality. This paper introduces a structured light system based on VCSEL(Vertical Cavity Surface Emitting Laser) with one simulated projectors and two camera for human face 3D shape measurement. Large-scale production cost of VCSEL is low, because of the manufacturing process compatible with LED. VCSEL has the advantages of projecting a large area of diffractive structure light and easy to integrate into lens array internally. The process of VCSEL projecting the structural light that changes over time to human face is simulated by computer. The ICP algorithm is used to match the image of single frame structure light from the right camera to the left camera. A single frame image of three-dimensional face point cloud is obtained by using binocular stereo vision principle. The multi-frame images of point cloud that change along time series are superposed to obtain higher density point cloud data and improve the measurement accuracy. This 3D measurement based on VCSEL has advantages of low cost, high precision, and small size and should be useful for practical applications.
The alert did not successfully save. Please try again later.
Jing Ye, Changhe Zhou, Chao Li, Chaofeng Miao, "High-precision 3D shape measurement based on time-resolved VCSEL," Proc. SPIE 10818, Holography, Diffractive Optics, and Applications VIII, 1081829 (8 November 2018); https://doi.org/10.1117/12.2502417