Translator Disclaimer
24 July 2018 A defect detection algorithm based on statistical feature of local visual field for complex metal curve surface
Author Affiliations +
Proceedings Volume 10827, Sixth International Conference on Optical and Photonic Engineering (icOPEN 2018); 108271B (2018) https://doi.org/10.1117/12.2500384
Event: Sixth International Conference on Optical and Photonic Engineering (icOPEN 2018), 2018, Shanghai, China
Abstract
In view of the difficulty of defects detection of complex metal curve surface in uneven illumination and high speed processing, a new, simple, yet robust algorithm based on statistical feature of local visual field is proposed. This algorithm first performs the ideal image difference by extracting the template from the image itself, and then computes the statistical feature in local visual field to correct the gray-scale fluctuation in each region of image. In this way, the influence of the uneven illumination at low and high frequency is eliminated concurrently, which achieves the equalization of the statistical features of the local visual fields except the position containing the defect, so as to use the global threshold in whole image reasonably; Next, on the search of defects, this paper replaces the pixel level with the local field of vision and compresses the image information with the defects’ scale which is in line with the human eye. This not only reduces the influence of random noise, but also greatly improves the processing speed while preserving defects information, which makes it possible to realize real-time processing ability for image with the large amount of data. To detect complex curved surface on semi-finished metal shell of cell phone, the experimental results demonstrate that the defects detection accuracy of the proposed algorithm can reach 95%, and the detection time for single test area is less than 1ms, which is suitable for accurate and real-time detection on the production line for such surface defect.
© (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Rongzhi Liu, Yongying Yang, Chen Li, Fanyi Wang, Yubin Du, Xiang Xiao, Guohua Feng, and Yanwei Li "A defect detection algorithm based on statistical feature of local visual field for complex metal curve surface", Proc. SPIE 10827, Sixth International Conference on Optical and Photonic Engineering (icOPEN 2018), 108271B (24 July 2018); https://doi.org/10.1117/12.2500384
PROCEEDINGS
6 PAGES


SHARE
Advertisement
Advertisement
Back to Top